Theoretical analysis of projectiles penetrating into rock targets at different velocities
-
摘要: 随着撞击速度的增加,弹体对岩石类靶体的侵彻机制会发生显著变化,由刚体侵彻逐步转变为半流体侵彻和流体侵彻,3种侵彻机制各自适用的理论模型完全不同。在半流体侵彻阶段,弹体质量损失开始显著增加,造成侵彻效率严重下降,侵彻深度随撞击速度的增加急剧减小。基于提出的弹体质量与速度的理论模型以及弹体刚体段的侵彻阻抗,推导出考虑弹体质量损失的半流体侵彻深度计算公式。对于超高速撞击时的流体动力学侵彻段,通过对流体区和刚性区进行假定,建立动量守恒和伯努利方程,推导给出该阶段弹体的侵彻阻抗,结合弹体质量变化方程推导出侵彻深度的表达式。最后将3个阶段的理论计算结果与花岗岩侵彻试验数据进行了对比验证,侵深和弹体质量变化规律均吻合良好,而且各阶段模型计算结果反映出的侵彻变化规律与实验结果完全一致。Abstract: As the impact velocity increases, the penetration mechanism varies from rigid penetration to semi-liquid penetration and fluid penetration, each of which follows a wholly different analytical model. In the semi-liquid penetration stage, the mass loss of the projectile body begins to increase obviously, leading to serious decrease of the penetration efficiency and the penetration depth at the increase of the impact velocity. The intrinsic analytical model of rigid penetration was deducted by analysis of the real deformation and stress states of different damage zones. Based on the proposed relationship between penetration and velocity, we established the equation of penetration depth in account of the projectile mass loss, proposed the hypothesis of fluid and rigid region of fluid penetration under hypervelocity impact and, by adopting the laws of conservation of momentum and Bernoulli equation, presented the formulas for penetration resistance, and deduced the corresponding equations of penetration depth using the relational expression of the projectile mass loss. By comparison of the result of calculation with experimental data of penetration into granite, we proved the reliability of the formulas for the three stages, showing them in good compatibility in penetration depth and mass loss of the projectile with each other, and verifying a full agreement between their variation and experimental results.
-
Key words:
- impact mechanics /
- penetration /
- high-velocity penetration /
- rock target /
- penetration mechanism
-
表 1 侵彻深度及弹体剩余质量情况
Table 1. Penetration depth and residual mass of projectile
序号 撞击速度/(m·s-1) 侵彻深度/mm 弹体残余质量/g 1 1 196 118.80 31.65 2 1 426 146.02 31.42 3 1 430 155.80 31.32 4 1 600 163.90 30.83 5 1 654 134.00 30.83 6 1 752 87.40 10.17 7 1 789 83.10 9.35 8 1 808 93.40 10.25 9 2 067 105.47 6.36 10 2 165 104.73 5.19 11 2 356 109.84 5.13 12 2 378 101.48 3.79 -
[1] ROSENBERG Z, DEKEL E. On the role of material properties in the terminal ballistics of long rods[J]. International Journal of Impact Engineering, 2004, 30(7):835-851. doi: 10.1016/j.ijimpeng.2004.03.007 [2] CHEN X W, LI Q M. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1):123-127. doi: 10.1061/(ASCE)0733-9399(2004)130:1(123) [3] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects[J]. Nuclear Engineering & Design, 1976, 37(2):183-203. https://www.sciencedirect.com/science/article/pii/0029549376900157 [4] YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3 [5] CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile[J]. International Journal of Impact Engineering, 2004, 30(6):617-637. doi: 10.1016/j.ijimpeng.2003.08.003 [6] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering, 2005, 32(1):224-284. https://www.research.manchester.ac.uk/portal/en/publications/local-impact-effects-of-hard-missiles-on-concrete-targets(cf4cf291-e292-4272-a99c-d8358fc1e512)/export.html [7] HEUZÉ F E. An overview of projectile penetration into geological materials, with emphasis on rocks[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1990, 27(1):1-14. https://www.sciencedirect.com/science/article/pii/014890629090003K [8] FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets[J]. International Journal of Impact Engineering, 2008, 35(8):727-730. doi: 10.1016/j.ijimpeng.2007.11.002 [9] FORRESTAL M J, HANCHAK S J. Penetration limit velocity for ogive-nose projectiles and limestone targets[J]. Journal of Applied Mechanics, 2002, 69(6):853-854. doi: 10.1115/1.1480820 [10] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids & Structures, 1997, 34(s31/s32):4127-4146. doi: 10.1007/s10409-011-0505-1 [11] 王明洋, 陈士林, 潘越峰.平头弹在岩石(混凝土)介质中的侵彻计算方法[J].兵工学报, 2005, 26(1):46-52. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bgxb200501010WANG Mingyang, CHEN Shilin, PAN Yuefeng. Method of calculation for the penetration of a flat-nosed projectile in the rock (concrete)[J]. Acta Armamentarii, 2005, 26(1):46-52. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bgxb200501010 [12] WEN H M. Analytical models for the penetration of semi-infinite targets by rigid, deformable and erosive long rods[J]. Acta Mechanica Sinica, 2010, 26(4):573-583. doi: 10.1007/s10409-010-0349-0 [13] 张德志, 张向荣, 林俊德.高强钢弹对花岗岩正侵彻的实验研究[J].岩石力学与工程学报, 2005, 24(9):1612-1618. http://d.wanfangdata.com.cn/Periodical_yslxygcxb200509024.aspxZHANG Dezhi, ZHANG Xiangrong, LIN Junde, et al. Penetration experiments for normal impact into granite targets with high strength steel projectile[J].Chinese Journal of Rock Mechanics and Engineering, ,2005, 24(9):1613-1618. http://d.wanfangdata.com.cn/Periodical_yslxygcxb200509024.aspx [14] 沈俊, 徐翔云, 何翔, 等.弹体高速侵彻岩石效应试验研究[J].岩石力学与工程学报, 2010, 29(s2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106SHEN Jun, XU Xiangyun, HE Xiang, et al. Experimental study of effect of rock targets penetrated by high-velocity projectiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(s2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106 [15] 王明洋, 邓宏见, 钱七虎.岩石中侵彻与爆炸作用的近区问题研究[J].岩石力学与工程学报, 2005, 24(6):2859-2863. doi: 10.3321/j.issn:1000-6915.2005.16.008WANG Mingyang, DENG Hongjian, QIAN Qihu. Study on problems of near cavity of penetration and explosion in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2859-2864. doi: 10.3321/j.issn:1000-6915.2005.16.008 期刊类型引用(18)
1. 韩明海,刘闯,李鹏程,刘子涵,张先锋. 弹体高速侵彻花岗岩靶体的结构响应特性. 爆炸与冲击. 2025(01): 104-124 . 本站查看
2. 杨慧,王可慧,周刚,李明,吴海军,戴湘晖,段建. 不同风化程度花岗岩的动态力学特性及抗侵彻性能. 爆炸与冲击. 2024(10): 49-66 . 本站查看
3. 徐恒威,卢永刚,李军润,冯晓伟,卢正操. 考虑变形/侵蚀耦合的弹体横截面积理论模型. 兵工学报. 2024(S1): 97-104 . 百度学术
4. 何勇,李干,郭纬,邓树新. 高超声速钻地炸弹侵彻深度计算方法. 防护工程. 2023(02): 31-36 . 百度学术
5. 李国辉,刘基程,耿汉生,马林建,李增. 岩石高速-超高速侵彻效应研究进展. 防护工程. 2023(05): 67-78 . 百度学术
6. 吴学志,程怡豪,宋春明,王德荣,王可佳. 高速侵彻下弹体纵向应力分布规律与变形破坏关联机制的数值计算研究. 防护工程. 2022(02): 30-36 . 百度学术
7. 姚志彦,李金柱,齐凯丽,徐杨,黄风雷. 长杆弹超高速侵彻砂浆靶临界速度的实验和计算. 兵工学报. 2022(07): 1578-1588 . 百度学术
8. 王志亮,李允忠,黄佑鹏. JH-2模型参数确定及花岗岩重复侵彻数值分析. 哈尔滨工业大学学报. 2020(11): 127-136 . 百度学术
9. 王鹏远. 基于可变粒度调度的爬壁机器人路径规划仿真. 计算机仿真. 2020(09): 291-294+351 . 百度学术
10. 高飞,张国凯,纪玉国,陈建宇. 卵形弹体超高速侵彻砂浆靶的响应特性. 兵工学报. 2020(10): 1979-1987 . 百度学术
11. 马军平,谭仪忠,王昱蘅,张俊海,陈昊,张枫. 高原寒区多年冻土抗侵彻性能数值模拟研究. 防护工程. 2019(01): 25-30 . 百度学术
12. 王德荣,常清,宋春明,李干. 弹体高速侵彻岩石靶体深度计算. 防护工程. 2019(02): 7-12 . 百度学术
13. 徐松林,单俊芳,王鹏飞,胡时胜. 三轴应力状态下混凝土的侵彻性能研究. 爆炸与冲击. 2019(07): 4-11 . 本站查看
14. 程怡豪,邓国强,李干,宋春明,邱艳宇,张中威,王德荣,王明洋. 分层地质类材料靶体抗超高速侵彻模型实验. 爆炸与冲击. 2019(07): 82-90 . 本站查看
15. 王明洋,邱艳宇,李杰,李海波,赵章泳. 超高速长杆弹对岩石侵彻、地冲击效应理论与实验研究. 岩石力学与工程学报. 2018(03): 564-572 . 百度学术
16. 王明洋,李杰,李海波,邱艳宇. 岩石的动态压缩行为与超高速动能弹毁伤效应计算. 爆炸与冲击. 2018(06): 1200-1217 . 本站查看
17. 王明洋,岳松林,李海波,邱艳宇,李杰. 超高速弹撞击岩石的地冲击效应等效计算. 岩石力学与工程学报. 2018(12): 2655-2663 . 百度学术
18. 张东明,白鑫,尹光志,李树建,饶孜,何庆兵. 低渗煤层液态CO_2相变射孔破岩及裂隙扩展力学机理. 煤炭学报. 2018(11): 3154-3168 . 百度学术
其他类型引用(5)
-