Theoretical analysis of projectiles penetrating into rock targets at different velocities
-
摘要: 随着撞击速度的增加,弹体对岩石类靶体的侵彻机制会发生显著变化,由刚体侵彻逐步转变为半流体侵彻和流体侵彻,3种侵彻机制各自适用的理论模型完全不同。在半流体侵彻阶段,弹体质量损失开始显著增加,造成侵彻效率严重下降,侵彻深度随撞击速度的增加急剧减小。基于提出的弹体质量与速度的理论模型以及弹体刚体段的侵彻阻抗,推导出考虑弹体质量损失的半流体侵彻深度计算公式。对于超高速撞击时的流体动力学侵彻段,通过对流体区和刚性区进行假定,建立动量守恒和伯努利方程,推导给出该阶段弹体的侵彻阻抗,结合弹体质量变化方程推导出侵彻深度的表达式。最后将3个阶段的理论计算结果与花岗岩侵彻试验数据进行了对比验证,侵深和弹体质量变化规律均吻合良好,而且各阶段模型计算结果反映出的侵彻变化规律与实验结果完全一致。Abstract: As the impact velocity increases, the penetration mechanism varies from rigid penetration to semi-liquid penetration and fluid penetration, each of which follows a wholly different analytical model. In the semi-liquid penetration stage, the mass loss of the projectile body begins to increase obviously, leading to serious decrease of the penetration efficiency and the penetration depth at the increase of the impact velocity. The intrinsic analytical model of rigid penetration was deducted by analysis of the real deformation and stress states of different damage zones. Based on the proposed relationship between penetration and velocity, we established the equation of penetration depth in account of the projectile mass loss, proposed the hypothesis of fluid and rigid region of fluid penetration under hypervelocity impact and, by adopting the laws of conservation of momentum and Bernoulli equation, presented the formulas for penetration resistance, and deduced the corresponding equations of penetration depth using the relational expression of the projectile mass loss. By comparison of the result of calculation with experimental data of penetration into granite, we proved the reliability of the formulas for the three stages, showing them in good compatibility in penetration depth and mass loss of the projectile with each other, and verifying a full agreement between their variation and experimental results.
-
Key words:
- impact mechanics /
- penetration /
- high-velocity penetration /
- rock target /
- penetration mechanism
-
表 1 侵彻深度及弹体剩余质量情况
Table 1. Penetration depth and residual mass of projectile
序号 撞击速度/(m·s-1) 侵彻深度/mm 弹体残余质量/g 1 1 196 118.80 31.65 2 1 426 146.02 31.42 3 1 430 155.80 31.32 4 1 600 163.90 30.83 5 1 654 134.00 30.83 6 1 752 87.40 10.17 7 1 789 83.10 9.35 8 1 808 93.40 10.25 9 2 067 105.47 6.36 10 2 165 104.73 5.19 11 2 356 109.84 5.13 12 2 378 101.48 3.79 -
[1] ROSENBERG Z, DEKEL E. On the role of material properties in the terminal ballistics of long rods[J]. International Journal of Impact Engineering, 2004, 30(7):835-851. doi: 10.1016/j.ijimpeng.2004.03.007 [2] CHEN X W, LI Q M. Transition from non-deformable projectile penetration to semi-hydrodynamic penetration[J]. Journal of Engineering Mechanics, 2004, 130(1):123-127. doi: 10.1061/(ASCE)0733-9399(2004)130:1(123) [3] KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects[J]. Nuclear Engineering & Design, 1976, 37(2):183-203. https://www.sciencedirect.com/science/article/pii/0029549376900157 [4] YANKELEVSKY D Z. Local response of concrete slabs to low velocity missile impact[J]. International Journal of Impact Engineering, 1997, 19(4):331-343. doi: 10.1016/S0734-743X(96)00041-3 [5] CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile[J]. International Journal of Impact Engineering, 2004, 30(6):617-637. doi: 10.1016/j.ijimpeng.2003.08.003 [6] LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering, 2005, 32(1):224-284. https://www.research.manchester.ac.uk/portal/en/publications/local-impact-effects-of-hard-missiles-on-concrete-targets(cf4cf291-e292-4272-a99c-d8358fc1e512)/export.html [7] HEUZÉ F E. An overview of projectile penetration into geological materials, with emphasis on rocks[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1990, 27(1):1-14. https://www.sciencedirect.com/science/article/pii/014890629090003K [8] FORRESTAL M J, WARREN T L. Penetration equations for ogive-nose rods into aluminum targets[J]. International Journal of Impact Engineering, 2008, 35(8):727-730. doi: 10.1016/j.ijimpeng.2007.11.002 [9] FORRESTAL M J, HANCHAK S J. Penetration limit velocity for ogive-nose projectiles and limestone targets[J]. Journal of Applied Mechanics, 2002, 69(6):853-854. doi: 10.1115/1.1480820 [10] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids & Structures, 1997, 34(s31/s32):4127-4146. doi: 10.1007/s10409-011-0505-1 [11] 王明洋, 陈士林, 潘越峰.平头弹在岩石(混凝土)介质中的侵彻计算方法[J].兵工学报, 2005, 26(1):46-52. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bgxb200501010WANG Mingyang, CHEN Shilin, PAN Yuefeng. Method of calculation for the penetration of a flat-nosed projectile in the rock (concrete)[J]. Acta Armamentarii, 2005, 26(1):46-52. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_bgxb200501010 [12] WEN H M. Analytical models for the penetration of semi-infinite targets by rigid, deformable and erosive long rods[J]. Acta Mechanica Sinica, 2010, 26(4):573-583. doi: 10.1007/s10409-010-0349-0 [13] 张德志, 张向荣, 林俊德.高强钢弹对花岗岩正侵彻的实验研究[J].岩石力学与工程学报, 2005, 24(9):1612-1618. http://d.wanfangdata.com.cn/Periodical_yslxygcxb200509024.aspxZHANG Dezhi, ZHANG Xiangrong, LIN Junde, et al. Penetration experiments for normal impact into granite targets with high strength steel projectile[J].Chinese Journal of Rock Mechanics and Engineering, ,2005, 24(9):1613-1618. http://d.wanfangdata.com.cn/Periodical_yslxygcxb200509024.aspx [14] 沈俊, 徐翔云, 何翔, 等.弹体高速侵彻岩石效应试验研究[J].岩石力学与工程学报, 2010, 29(s2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106SHEN Jun, XU Xiangyun, HE Xiang, et al. Experimental study of effect of rock targets penetrated by high-velocity projectiles[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(s2):4207-4212. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb2010z2106 [15] 王明洋, 邓宏见, 钱七虎.岩石中侵彻与爆炸作用的近区问题研究[J].岩石力学与工程学报, 2005, 24(6):2859-2863. doi: 10.3321/j.issn:1000-6915.2005.16.008WANG Mingyang, DENG Hongjian, QIAN Qihu. Study on problems of near cavity of penetration and explosion in rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2859-2864. doi: 10.3321/j.issn:1000-6915.2005.16.008 期刊类型引用(11)
1. 张博,张丁山,全嘉林,赵永刚. 头部刻槽弹体高速侵彻混凝土实验研究. 兵器装备工程学报. 2024(04): 154-158 . 百度学术
2. 屈可朋,吴翰林,郭洪福,肖玮,胡雪垚. 复合式侵彻体斜侵彻多层钢靶弹道研究. 弹道学报. 2022(01): 45-50 . 百度学术
3. 张丁山,谷鸿平,徐笑,张博,吕永柱. 截卵形头部平台直径对初始侵彻弹道偏转的影响. 高压物理学报. 2021(05): 138-144 . 百度学术
4. 刘坚成,渠弘毅,张晓涵,申明辉,郭立力. 头部刻槽战斗部侵彻性能机理研究. 导弹与航天运载技术. 2020(03): 21-23+37 . 百度学术
5. 邓佳杰,张先锋,刘闯,庞春旭,王文杰. 头部非对称刻槽弹体侵彻混凝土目标性能研究. 兵工学报. 2018(07): 1249-1258 . 百度学术
6. 贾宝惠,李剑峰,邓云飞. 一种异形弹撞击2A12铝合金薄靶的数值研究. 机械设计与制造. 2018(04): 72-75 . 百度学术
7. 邓佳杰,张先锋,刘闯,王文杰,徐晨阳. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型. 爆炸与冲击. 2018(06): 1231-1240 . 本站查看
8. 邓佳杰,张先锋,葛贤坤,陈东东,郭磊. 基于局部相互作用理论的侵彻弹头部形状优化及仿真. 爆炸与冲击. 2017(04): 611-620 . 本站查看
9. 刘宗伟,武海军,张学伦,刘俞平,熊国松,谭正军,曾令清. 高超弹体侵蚀机理及抗侵蚀设计研究. 兵器装备工程学报. 2017(04): 46-49 . 百度学术
10. 张学伦,刘宗伟. 弹丸CRH值对侵彻混凝土深度影响研究. 兵器装备工程学报. 2016(10): 31-34 . 百度学术
11. 马兆芳,段卓平,欧卓成,黄风雷. 弹体斜侵彻贯穿薄混凝土靶姿态变化实验和理论研究. 兵工学报. 2015(S1): 248-254 . 百度学术
其他类型引用(9)
-