连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟

李国庆 杜扬 齐圣 王世茂 李蒙 李润

李国庆, 杜扬, 齐圣, 王世茂, 李蒙, 李润. 连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟[J]. 爆炸与冲击, 2018, 38(6): 1286-1394. doi: 10.11883/bzycj-2017-0215
引用本文: 李国庆, 杜扬, 齐圣, 王世茂, 李蒙, 李润. 连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟[J]. 爆炸与冲击, 2018, 38(6): 1286-1394. doi: 10.11883/bzycj-2017-0215
LI Guoqing, DU Yang, QI Sheng, WANG Shimao, LI Meng, LI Run. Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles[J]. Explosion And Shock Waves, 2018, 38(6): 1286-1394. doi: 10.11883/bzycj-2017-0215
Citation: LI Guoqing, DU Yang, QI Sheng, WANG Shimao, LI Meng, LI Run. Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles[J]. Explosion And Shock Waves, 2018, 38(6): 1286-1394. doi: 10.11883/bzycj-2017-0215

连续圆孔障碍物对油气泄压爆炸火焰特性影响大涡模拟

doi: 10.11883/bzycj-2017-0215
基金项目: 

国家自然科学基金项目 51276195

重庆市研究生科研创新项目 CYB16128

详细信息
    作者简介:

    李国庆(1990-), 男, 博士研究生, boyueshe@sina.com

  • 中图分类号: O381;X932

Large eddy simulation on the vented gasoline-air mixture explosions in a semi-confined pipe with continuous circular hollow obstacles

  • 摘要: 采用WALE模型和Zimont预混火焰模型对内置圆孔障碍物油气泄压爆炸火焰特性进行了大涡模拟,并将大涡模拟计算结果和RNG k-ε湍流模型计算结果以及实验结果进行对比分析,验证了大涡模拟的精确性。结果表明:(1)大涡模拟在预测油气爆炸超压、火焰传播速度以及火焰形态变化等方面比RNG k-ε湍流模型精确度更高,且能表现出更多流场的精细化结构;(2)障碍物诱导管道内形成湍流度较高的流场区域,导致火焰产生褶皱弯曲变形,增大火焰面积,加速火焰传播;(3)爆炸超压、火焰传播速度和火焰面积内在联系密切,具有显著的耦合性,且随时间的变化趋势存在高度的一致性。
  • 图  1  实验系统图

    Figure  1.  Schematic diagram of experimental system

    图  2  实验管道示意图

    Figure  2.  Schematic diagram of the explosion pipe

    图  3  实验和模拟所得火焰结构对比

    Figure  3.  Comparison between experimental and simulated flame structures at different times after ignition

    图  4  实验和模拟火焰锋面位置对比

    Figure  4.  Comparison between experi-mental and simulated flame front locations along pipe versus time

    图  5  实验和模拟超压-时间曲线对比

    Figure  5.  Comparison between experimental and simulated overpressure time histories of monitor point at the closed end

    图  6  实验和模拟所得火焰传播速度

    Figure  6.  Comparison between experi-mental and simulated flame speeds

    图  7  火焰结构三维图像(反应进程等值面c=0.5)

    Figure  7.  Three-dimensional flame structure images (iso-surface of progress variable c=0.5) at different times after ignition

    图  8  管道内火焰传播和流场结构图

    Figure  8.  Flame propagation and flow field in an obstructed pipe

    图  9  外场火焰和流场耦合图

    Figure  9.  Coupling results of the flame propagation and flow field outside the pipe

    图  10  爆炸超压与火焰传播速度、火焰面积耦合关系

    Figure  10.  Coupling relationship between explosion overpressure and flame speed and flame surface area

  • [1] 杜扬, 李国庆, 吴松林, 等.T型分支管道对油气爆炸强度的影响[J].爆炸与冲击, 2015, 35(5):729-734. http://www.bzycj.cn/CN/abstract/abstract9524.shtml

    DU Yang, LI Guoqing, WU Songlin, et al. Explosion intensity of gasoline-air mixture in the pipeline containing a T-shaped branch pipe[J]. Explosion and Shock Waves, 2015, 35(5):729-734. http://www.bzycj.cn/CN/abstract/abstract9524.shtml
    [2] LI G, DU Y, QI S, LI Y, et al. Explosions of gasoline-air mixtures in a closed pipe containing a T-shaped branch structure[J]. Journal of Loss Prevention in the Process Industries, 2016, 43:529-536. doi: 10.1016/j.jlp.2016.07.022
    [3] JOHANSEN C, CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combustion and Flame, 2009, 156(2):405-416. doi: 10.1016/j.combustflame.2008.07.010
    [4] 陈鹏, 李艳超, 黄福军, 等.方孔障碍物对瓦斯火焰传播影响的实验与大涡模拟[J].爆炸与冲击, 2017, 37(1):21-26. http://www.bzycj.cn/CN/abstract/abstract9681.shtml

    CHEN Peng, LI Yanchao, HUANG Fujun, et al. LES approach to premixed methane/air flame propagating in the closed duct with a square-hole obstacl[J]. Explosion and Shock Waves, 2017, 37(1):21-26. http://www.bzycj.cn/CN/abstract/abstract9681.shtml
    [5] 王公忠, 张建华, 李登科, 等.障碍物对预混火焰特性影响的大涡数值模拟[J].爆炸与冲击, 2017, 37(1):68-76. http://www.bzycj.cn/CN/abstract/abstract9687.shtml

    WANG Gongzhong, ZHANG Jianhua, LI Dengke, et al. Large eddy simulation of impacted obstacles' effects on premixed flame's characteristics[J]. Explosion and Shock Waves, 2017, 37(1):68-76. http://www.bzycj.cn/CN/abstract/abstract9687.shtml
    [6] WEN X, YU M, JI W, et al. Methane-air explosion characteristics with different obstacle configurations[J]. International Journal of Mining Science and Technology, 2015, 25(2):213-218. doi: 10.1016/j.ijmst.2015.02.008
    [7] WEN X, YU M, LIU Z, et al. Large eddy simulation of methane-air deflagration in an obstructed chamber using different combustion models[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(4):730-738. doi: 10.1016/j.jlp.2012.04.008
    [8] NA'INNA A M, PHYLAKTOU H N, ANDREWS G E. The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6):1597-1603. doi: 10.1016/j.jlp.2013.08.003
    [9] BLANCHARD R, ARNDT D, GRÄTZ R, et al. Explosions in closed pipes containing baffles and 90 degree bends[J]. Journal of Loss Prevention in the Process Industries, 2010, 23(2):253-259. doi: 10.1016/j.jlp.2009.09.004
    [10] HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of concentration effects on the flame acceleration in vented channels[J]. Journal of Loss Prevention in the Process Industries, 2015, 36:447-459. doi: 10.1016/j.jlp.2015.04.005
    [11] 杜扬, 李国庆, 王世茂, 等.障碍物数量对油气泄压爆炸特性的影响[J].化工学报, 2017, 68(7):2946-2955. http://d.old.wanfangdata.com.cn/Periodical/hgxb201707040

    DU Yang, LI Guoqing, WANG Shimao, et al. Effects of obstacle number on the characteristics of vented gasoline-air mixture explosions[J]. CIESC Journal, 2017, 68(7):2946-2955. http://d.old.wanfangdata.com.cn/Periodical/hgxb201707040
    [12] 李国庆, 杜扬, 齐圣, 等.障碍物对油气-空气混合气体泄压爆炸火焰传播特性影响[J].中国安全生产科学技术, 2017, 13(1):163-168. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201701042

    LI Guoqing, DU Yang, QI Sheng, et al. Effects of obstacles on the flame propagation characteristics of vented gasoline-air mixtures explosions[J]. Journal of Safety Science and Technology, 2017, 13(1):163-168. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201701042
    [13] LI G, DU Y, LIANG J, et al. Characteristics of gasoline-air mixture explosions with different obstacle configurations[J]. Journal of the Energy Institute, 2018, 91:194-202. doi: 10.1016/j.joei.2017.01.001
    [14] 王世茂, 杜扬, 张少波, 等.顶部开口条件下油罐油气爆炸数值模拟[J].后勤工程学院学报, 2015(4):51-56. doi: 10.3969/j.issn.1672-7843.2015.04.009

    WANG Shimao, DU Yang, ZHANG Shaobo, et al. Numerical simulation on fuel air mixture explosion in the oil tank with an open top[J]. Journal of Logistics Engineering University, 2015(4):51-56. doi: 10.3969/j.issn.1672-7843.2015.04.009
    [15] 李国庆, 杜扬, 白洁, 等.T型分支管道内油气爆炸火焰传播特性数值模拟研究[J].中国安全生产科学技术, 2016, 12(9):120-127. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201609022

    LI Guoqing, DU Yang, BAI Jie, et al. Numerical Simulation on flame propagation features of gasoline-vaper explosion in T-shaped branch pipe[J]. Journal of Safety Science and Technology, 2016, 12(9):120-127. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201609022
    [16] 蒋新生, 杜扬, 唐晓寅, 等.油料洞库油气爆炸抑制数值模拟[J].后勤工程学院学报, 2008, 24(4):13-18. doi: 10.3969/j.issn.1672-7843.2008.04.004

    JIANG Xinsheng, DU Yang, TANG Xiaoyin, et al. Numerical simulation on fuel-air mixture explosion suppression in underground oil depot[J]. Journal of Logistics Engineering University, 2008, 24(4):13-18. doi: 10.3969/j.issn.1672-7843.2008.04.004
    [17] NICOUD F, DUCROS F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor[J]. Flow, Turbulence and Combustion, 1999, 62(3):183-200. doi: 10.1023/A:1009995426001
    [18] 何标, 蒋新生, 孙国骏, 等.基于大涡模拟的气体羽流分层特性数值模拟[J].后勤工程学院学报, 2015(1):38-44. doi: 10.3969/j.issn.1672-7843.2015.01.008

    HE Biao, JIANG Xinsheng, SUN Guojun, et al. Numerical simulation of gas plume stratification based on large eddy simulation[J]. Journal of Logistics Engineering University, 2015(1):38-44. doi: 10.3969/j.issn.1672-7843.2015.01.008
    [19] ZIMONT V, BATTAGLIA V. Joint RANS/LES approach to premixed flames modelling in the context of the TFC combustion model[J]. Flow, Turbulence and Combustion, 2006, 77(1):305-331. https://www.researchgate.net/publication/286970583_Joint_RANSLES_approach_to_premixed_flames_modelling_in_the_context_of_the_TFC_combustion_model
    [20] ZIMONT V L. Gas premixed combustion at high turbulence. Turbulent flame closure combustion model[J]. Experimental Thermal & Fluid Science, 2000, 21(1/2/3):179-186. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ027474251/
    [21] MANNAA O, MANSOUR M S, ROBERTS W L, et al. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON[J]. Combustion & Flame, 2015, 162(6):2311-2321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0235325261
    [22] PATEL S N D H, JARVIS S, IBRAHIM S S, et al. An experimental and numerical investigation of premixed flame deflagration in a semiconfined explosion chamber[J]. Proceedings of the Combustion Institute, 2002, 29(2):1849-1854. doi: 10.1016/S1540-7489(02)80224-3
    [23] XU C, CONG L, YU Z, et al. Numerical simulation of premixed methane-air deflagration in a semi-confined obstructed chamber[J]. Journal of Loss Prevention in the Process Industries, 2015, 34:218-224. doi: 10.1016/j.jlp.2015.02.007
    [24] SARLI V D, BENEDETTO A D, RUSSO G. Using large eddy simulation for understanding vented gas explosions in the presence of obstacles[J]. Journal of Hazardous Materials, 2009, 169(1/2/3):435-442. https://www.researchgate.net/publication/24396517_Using_Large_Eddy_Simulation_for_understanding_vented_gas_explosions_in_the_presence_of_obstacles
  • 加载中
图(10)
计量
  • 文章访问数:  4664
  • HTML全文浏览量:  1402
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 修回日期:  2017-09-06
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回