冲击载荷下HTPB推进剂的热耗散

童心 李龙 马赛尔 许进升 郑亚

童心, 李龙, 马赛尔, 许进升, 郑亚. 冲击载荷下HTPB推进剂的热耗散[J]. 爆炸与冲击, 2018, 38(6): 1255-1261. doi: 10.11883/bzycj-2017-0219
引用本文: 童心, 李龙, 马赛尔, 许进升, 郑亚. 冲击载荷下HTPB推进剂的热耗散[J]. 爆炸与冲击, 2018, 38(6): 1255-1261. doi: 10.11883/bzycj-2017-0219
TONG Xin, LI Long, MA Sai'er, XU Jinsheng, ZHENG Ya. Heat dissipation of HTPB propellant under impact loading[J]. Explosion And Shock Waves, 2018, 38(6): 1255-1261. doi: 10.11883/bzycj-2017-0219
Citation: TONG Xin, LI Long, MA Sai'er, XU Jinsheng, ZHENG Ya. Heat dissipation of HTPB propellant under impact loading[J]. Explosion And Shock Waves, 2018, 38(6): 1255-1261. doi: 10.11883/bzycj-2017-0219

冲击载荷下HTPB推进剂的热耗散

doi: 10.11883/bzycj-2017-0219
基金项目: 

国家自然科学基金项目 51606098

江苏省自然科学基金项目 BK20140772

详细信息
    作者简介:

    童心(1991-), 男, 博士研究生

    通讯作者:

    许进升, xujinsheng@njust.edu.cn

  • 中图分类号: O381;V512.3

Heat dissipation of HTPB propellant under impact loading

  • 摘要: 为了研究HTPB推进剂在冲击载荷下的能量耗散规律,结合分离式霍普金森压杆(SHPB)搭建了红外测温系统。该系统响应速度快,可同步获取冲击实验中HTPB推进剂表面的温度变化。结果表明,HTPB推进剂受载后表现出黏-超弹特性,并且在高速变形中试件经历了温度的显著升高。在黏-超弹性本构模型的基础上引入温度项,考虑了热软化效应,更加准确地描述了HTPB推进剂在高应变率变形下的热力学响应,可对复合固体推进剂在冲击载荷下的热力耦合分析提供参考。
  • 图  1  SHPB和瞬态测温模块

    Figure  1.  SHPB and transient temperature measurement module

    图  2  原位标定结果

    Figure  2.  Results of in-situ calibration

    图  3  应变和温度信号

    Figure  3.  Signals of strain and temperature

    图  4  应力平衡检验

    Figure  4.  Verification of stress equilibrium

    图  5  HTPB推进剂的真实应力应变关系

    Figure  5.  True stress-strain relation of HTPB propellant

    图  6  HTPB推进剂的应力、温度与应变的关系

    Figure  6.  Typical stress and temperature versus strain for HTPB propellant

    图  7  经热软化函数修正后的预测结果

    Figure  7.  Result of prediction with application of temperature softening function

  • [1] JACKSON T L, BUCKMASTER J. Heterogeneous propellant combustion[J]. AIAA Journal, 2002, 40(6):1122-1130. DOI: 10.2514/2.1761.
    [2] CAI W D, THAKRE P, YANG V. A model of AP/HTPB composite propellant combustion in rocket-motor environments[J]. Combustion Science and Technology, 2008, 180(12):2143-2169. DOI: 10.1080/00102200802414915.
    [3] SUN C, XU J, CHEN X, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant[J]. Mechanics of Materials, 2015, 89:35-46. DOI: 10.1016/j.mechmat.2015.06.002.
    [4] TONG X, CHEN X, XU J, et al. Excitation of thermal dissipation of solid propellants during the fatigue process[J]. Materials and Design, 2017, 128:47-55. DOI: 10.1016/j.matdes.2017.04.088.
    [5] 卢芳云, 陈荣, 林玉亮, 等.霍普金森杆实验技术[M].北京:高等教育出版社, 2013.
    [6] 卢芳云, 林玉亮, 王晓燕, 等.含能材料的高应变率响应实验[J].火炸药学报, 2006, 29(1):1-4. DOI: 10.14077/j.issn.1007-7812.2006.01.001.

    LU Fangyun, LIN Yuliang, WANG Xiaoyan, et al. Experimental investigation on dynamic response of energetic materials at high strain rate[J]. Chinese Journal of Explosives and Propellants, 2006, 29(1):1-4. DOI: 10.14077/j.issn.1007-7812.2006.01.001.
    [7] KENDALL M J, FROUD R F, SIVIOUR C R. Novel temperature measurement method and thermodynamic investigations of amorphous polymers during high rate deformation[J]. Polymer, 2014, 55(10):2514-2522. DOI: 10.1016/j.polymer.2014.03.058.
    [8] RITTEL D, BHATTACHARYYA A, POON B, et al. Thermomechanical characterization of pure polycrystalline tantalum[J]. Materials Science and Engineering:A, 2007, 447(1):65-70. DOI: 10.1016/j.msea.2006.10.064.
    [9] 刘永贵, 唐志平, 崔世堂.冲击载荷下瞬态温度的实时测量方法[J].爆炸与冲击, 2014, 34(4):471-475. DOI: 10.11883/1001-1455(2014)04-0471-05.

    LIU Yonggui, TANG Zhiping, CUI Shitang. Real-time measuring methods for transient temperature under shock loading[J]. Explosion and Shock Waves, 2014, 34(4):471-475. DOI: 10.11883/1001-1455(2014)04-0471-05.
    [10] PAN Z, XIONG J, LIANG S, et al. Transient deformation and heat generation of solid polyurethane under impact compression[J]. Polymer Testing, 2017, 61:269-279. DOI: 10.1016/j.polymertesting.2017.05.033.
    [11] PAN Z, SUN B, SHIM V P W, et al. Transient heat generation and thermo-mechanical response of epoxy resin under adiabatic impact compressions[J]. International Journal of Heat and Mass Transfer, 2016, 95:874-889. DOI: 10.1016/j.ijheatmasstransfer.2015.12.072.
    [12] 李涛, 傅华, 李克武, 等.单轴压缩下2种PBX炸药的动态变形损伤及其温升效应[J].爆炸与冲击, 2017, 37(1):120-125. DOI: 10.11883/1001-1445(2017)01-0120-06.

    LI Tao, FU Hua, LI Kewu, et al. Deformation with damage and temperature-rise of two types of plastic-bonded explosives under uniaxial compression[J]. Explosion and Shock Waves, 2017, 37(1):120-125. DOI: 10.11883/1001-1445(2017)01-0120-06.
    [13] RITTEL D, WANG Z G. Thermo-mechanical aspects of adiabatic shear failure of AM50 and Ti6Al4V alloys[J]. Mechanics of Materials, 2008, 40(8):629-635. DOI: 10.1115/esda2008-59141.
    [14] GARG M, MULLIKEN A D, BOYCE M C. Temperature rise in polymeric materials during high rate deformation[J]. Journal of Applied Mechanics, 2008, 75(1):148-155. DOI: 10.1115/1.2745388.
    [15] LI Z, LAMBROS J. Strain rate effects on the thermomechanical behavior of polymers[J]. International Journal of Solids and Structures, 2001, 38(20):3549-3562. DOI: 10.1016/s0020-7683(00)00223-7.
    [16] CHEN W W, SONG B. Split Hopkinson (Kolsky) bar:Design, testing and applications[M]. Springer Science and Business Media, 2010.
    [17] LU F, LIN Y, WANG X, et al. A theoretical analysis about the influence of interfacial friction in SHPB tests[J]. International Journal of Impact Engineering, 2015, 79:95-101. DOI: 10.1016/j.ijimpeng.2014.10.008.
    [18] 杨世铭, 陶文铨.传热学[M].4版.北京:高等教育出版社, 2006.
    [19] HODOWANY J. On the conversion of plastic work into heat[D]. California Institute of Technology, 1997.
    [20] 龙兵, 常新龙, 张有宏, 等.高应变率下HTPB推进剂动态断裂性能研究[J].推进技术, 2015, 36(3):471-475. DOI: 10.13675/j.cnki.tjjs.2015.03.022.

    LONG Bing, CHANG Xinlong, ZHANG Youhong, et al. Study on dynamic fracture properties of HTPB propellant under high strain rate[J]. Journal of Propulsive Technology, 2015, 36(3):471-475. DOI: 10.13675/j.cnki.tjjs.2015.03.022.
    [21] JIANG J, XU J S, ZHANG Z S, et al. Rate-dependent compressive behavior of EPDM insulation:Experimental and constitutive analysis[J]. Mechanics of Materials, 2016, 96:30-38. DOI: 10.1016/j.mechmat.2016.02.003.
    [22] XU J, CHEN X, WANG H, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18):3209-3217. DOI: 10.1016/j.ijsolstr.2014.05.024.
    [23] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. 1983: 541-547.
  • 加载中
图(7)
计量
  • 文章访问数:  4574
  • HTML全文浏览量:  1406
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-22
  • 修回日期:  2017-09-26
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回