火箭发动机燃烧过程的鲁棒非脆弱H控制

吴玉彬 张合新 朱开锐 李国梁 惠俊军

吴玉彬, 张合新, 朱开锐, 李国梁, 惠俊军. 火箭发动机燃烧过程的鲁棒非脆弱H∞控制[J]. 爆炸与冲击, 2019, 39(3): 034201. doi: 10.11883/bzycj-2017-0231
引用本文: 吴玉彬, 张合新, 朱开锐, 李国梁, 惠俊军. 火箭发动机燃烧过程的鲁棒非脆弱H控制[J]. 爆炸与冲击, 2019, 39(3): 034201. doi: 10.11883/bzycj-2017-0231
WU Yubin, ZHANG Hexin, ZHU Kairui, LI Guoliang, HUI Junjun. The robust non-fragile H∞ control for the combustion process in rocket motor[J]. Explosion And Shock Waves, 2019, 39(3): 034201. doi: 10.11883/bzycj-2017-0231
Citation: WU Yubin, ZHANG Hexin, ZHU Kairui, LI Guoliang, HUI Junjun. The robust non-fragile H control for the combustion process in rocket motor[J]. Explosion And Shock Waves, 2019, 39(3): 034201. doi: 10.11883/bzycj-2017-0231

火箭发动机燃烧过程的鲁棒非脆弱H控制

doi: 10.11883/bzycj-2017-0231
基金项目: 国家自然科学基金(61374120)
详细信息
    作者简介:

    吴玉彬(1984- ),男,博士,工程师, wuyubinxa@126.com

    通讯作者:

    张合新(1965- ),男,博士,教授,博导,59153220@qq.com

  • 中图分类号: O381; TP13

The robust non-fragile H control for the combustion process in rocket motor

  • 摘要: 针对某液体火箭发动机燃烧室的燃烧过程,设计了鲁棒非脆弱 H 状态反馈控制器。首先,基于一种新型的时滞分割法和交互式凸组合技术,借助于构造一个包含四重积分项的Lyapunov-Krasovskii泛函(LKF),并利用新的积分不等式方法给出了LMI形式的时滞相关有界实判据;其次,在有界实判据的基础上,采用矩阵的合同变换以及变量替代技巧将燃烧过程非线性矩阵不等式线性化,通过求解线性矩阵不等式得到相应的非脆弱H控制器的可行解。模拟结果验证了本文设计方法的有效性。
  • 图  1  燃烧室燃烧过程的自由运动曲线

    Figure  1.  Free motion of combustion in chambers

    图  2  非脆弱H控制器作用下系统的状态响应

    Figure  2.  Response of system under non-fragile H controller

    图  3  不同控制器作用下系统状态${x_2}(t)$的响应

    Figure  3.  Response of ${x_2}(t)$ under different controller

    图  4  控制器对时滞参数$\delta $的鲁棒性

    Figure  4.  Robust performance of controller to variation of $\delta $

    表  1  不同的H${_\infty }$性能指标ρ,模拟给出的MADB值hM

    Table  1.   The maximum allowable delay bound hM for a given ρ

    来源hM
    ρ=2.0ρ=2.5ρ=3.0ρ=3.5ρ=4.0
    文献[16]0.405 70.466 00.504 70.531 60.551 5
    文献[17]0.405 70.466 00.504 60.531 60.551 5
    文献[18]0.420 30.477 90.514 60.540 10.558 9
    文献[4]0.473 40.523 70.554 50.575 40.590 4
    文献[19]0.662 00.704 00.730 00.747 00.759 5
    定理10.957 11.013 61.056 51.081 21.092 7
    下载: 导出CSV

    表  2  不同的MADB值hM,仿真给出的MAPI值ρ

    Table  2.   The minimum allowable performance index ρ for a given hM

    来源ρ
    hM=0.1hM=0.2hM=0.3hM=0.4hM=0.5
    文献[16]1.071 41.242 61.506 71.963 42.298 1
    文献[17]1.071 41.242 51.506 71.963 42.298 1
    文献[18]1.057 71.211 21.451 51.873 32.775 7
    文献[19]0.933 10.952 51.021 61.120 41.284 3
    定理10.815 60.853 20.924 51.042 81.123 9
    下载: 导出CSV
  • [1] CROCCO L. Aspects of combustion stability in liquid propellant rocket motors, part I: fundamentals-low frequency instability with monopropellants [J]. Journal of the American Rocket Society, 1951, 21(2): 163–178. doi: 10.2514/8.4393
    [2] 钱学森, 宋健. 工程控制论[M]. 北京: 科学出版社, 1980: 343−365.
    [3] ZHANG Jin, PENG Chen, ZHENG Min. Improved results for linear discrete-time systems with an interval time-varying input delay [J]. International Journal of Systems Science, 2015, 47(2): 492–499. doi: 10.1080/00207721.2014.891674
    [4] ZHANG X M, HAN Q L. A delay decomposition approach to delay-dependent stability for linear systems with time-varying delays [J]. International Journal of Robust and Nonlinear Control, 2009, 19(17): 1922–1930. doi: 10.1002/rnc.1413
    [5] LEE W I, PARK P G. Second-order reciprocally convex approach to stability of systems with interval time-varying delays [J]. Applied Mathematics and Computation, 2014, 229(1): 245–253. doi: 10.1016/j.amc.2013.12.025
    [6] 张合新, 惠俊军, 周鑫, 等. 基于时滞分割法的区间变时滞不确定系统鲁棒稳定新判据 [J]. 控制与决策, 2014, 29(5): 907–912 doi: 10.13195/j.kzyjc.2013.0120

    ZHANG Hexin, HUI Junjun, ZHOU Xin, et al. New robust stability criteria for uncertain systems with interval time-varying delay based on delay-partitioning approach [J]. Control and Decision, 2014, 29(5): 907–912 doi: 10.13195/j.kzyjc.2013.0120
    [7] FARNAM A, REZA M E. Improved linear matrix inequality approach to stability analysis of linear systems with interval time-varying delays [J]. Journal of Computational and Applied Mathematics, 2016, 294(1): 49–56. doi: 10.1016/j.cam.2015.07.031
    [8] 聂万胜, 丰松江. 液体火箭发动机燃烧动力学模型与数值计算[M]. 北京: 国防工业出版社, 2011: 25−31.
    [9] 李涛, 张合新, 孟飞. 火箭发动机燃烧过程无记忆鲁棒镇定的积分不等式方法 [J]. 宇航学报, 2010, 31(12): 2788–2793 doi: 10.3873/j.issn.1000-1328.2010.12.025

    LI Tao, ZHANG Hexin, MENG Fei. Integral inequality approach to memoryless robust stabilization of combustion process in rocket motor [J]. Journal of Astronautics, 2010, 31(12): 2788–2793 doi: 10.3873/j.issn.1000-1328.2010.12.025
    [10] 惠俊军, 张合新, 周鑫, 等. 基于时滞分割方法的火箭发动机燃烧过程有记忆反馈控制 [J]. 航空学报, 2014, 35(4): 948–956

    HUI Junjun, ZHANG Hexin, ZHOU Xin, et al. Delay-decomposition approach to memory state feedback controller for stabilization of combustion process in rocket motor [J]. Acta Aeronautica ET Astronautica Sinica, 2014, 35(4): 948–956
    [11] SHEN Yi, LIU Hao. Robust control system design for missiles based on theory of time-delay and uncertainty [J]. Acta Aeronautica Astronautica Sinica, 2011, 32(3): 473–479. doi: 10.7527/S1000-6893.2010.21379
    [12] XIAO L, SAN Y, ZHU Y. Delay-dependent robust stabilization by states feedback for linear systems with uncertainties [J]. Systems Engineering and Electronics, 2013, 35(4): 802–806.
    [13] LIU P L. State feedback stabilization of time-varying delay uncertain systems: A delay decomposition approach [J]. Linear Algebra and its Applications, 2013, 438(5): 2188–2209. doi: 10.1016/j.laa.2012.10.008
    [14] LI C F, WANG Z S, WANG Y J, et al. Robust H delay control for glide vehicles via LMI [J]. Systems Engineering and Electronics, 2011, 33(9): 2060–2065.
    [15] SUN J, LIU G P, CHEN J. Delay-dependent stability and stabilization of neutral time-delay systems [J]. International Journal of Robust and Nonlinear Control, 2009, 19(1): 1364–1375. doi: 10.1002/rnc.1384
    [16] KEEL L H, BHATTACHARYYA S P. Robust, fragile, or optimal [J]. IEEE trans on automatic control, 1997, 42(8): 1098–1105. doi: 10.1109/9.618239
    [17] WU M, XIAO S P, ZHANG X M, et al. Non-fragile delay-dependent H control for linear neutral systems [J]. Systems Engineering and Electronics, 2008, 30(9): 1768–1773.
    [18] ZHANG J H, SHI P, YANG H J. Non-fragile robust stabilization and H control for uncertain stochastic nonlinear time-delay systems [J]. Chaos, Solitons Fractals, 2009, 42(5): 3187–3196. doi: 10.1016/j.chaos.2009.04.049
    [19] HUI J J, ZHANG H X, KONG X Y. Delay-dependent non-fragile H control for linear systems with interval time-varying delay [J]. International Journal of Automation and Computing, 2015, 12(1): 109–116. doi: 10.1007/s11633-014-0851-0
    [20] RAMAKRISHNAN K, RAY G. Robust stability criteria for uncertain linear systems with interval time-varying delay [J]. Journal of Control Theory and Applications, 2011, 9(4): 559–566. doi: 10.1007/s11768-011-9131-5
    [21] KIM J H. Delay-dependent robust and non-fragile guaranteed cost control for uncertain singular systems with time-varying state and input delays [J]. International Journal of Control, Automation, and Systems, 2009, 7(3): 357–364. doi: 10.1007/s12555-009-0304-7
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  4979
  • HTML全文浏览量:  1630
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-09-08
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回