粘结单元在模拟FRP层合板低速冲击响应中的应用

蒋振 文鹤鸣

蒋振, 文鹤鸣. 粘结单元在模拟FRP层合板低速冲击响应中的应用[J]. 爆炸与冲击, 2019, 39(4): 043202. doi: 10.11883/bzycj-2017-0245
引用本文: 蒋振, 文鹤鸣. 粘结单元在模拟FRP层合板低速冲击响应中的应用[J]. 爆炸与冲击, 2019, 39(4): 043202. doi: 10.11883/bzycj-2017-0245
JIANG Zhen, WEN Heming. Application of cohesive elements in modeling the low-velocity impact responseand failure of fiber reinforced plastic laminates[J]. Explosion And Shock Waves, 2019, 39(4): 043202. doi: 10.11883/bzycj-2017-0245
Citation: JIANG Zhen, WEN Heming. Application of cohesive elements in modeling the low-velocity impact responseand failure of fiber reinforced plastic laminates[J]. Explosion And Shock Waves, 2019, 39(4): 043202. doi: 10.11883/bzycj-2017-0245

粘结单元在模拟FRP层合板低速冲击响应中的应用

doi: 10.11883/bzycj-2017-0245
详细信息
    作者简介:

    蒋 振(1991- ),男,硕士研究生,zj0510@mail.ustc.edu.cn

    通讯作者:

    文鹤鸣(1965- ),男,博士,教授, hmwen@mail.ustc.edu.cn

  • 中图分类号: O347.3

Application of cohesive elements in modeling the low-velocity impact responseand failure of fiber reinforced plastic laminates

  • 摘要: 纤维增强树脂基复合材料层合板(fibre reinforced plastic composites,FRP)在航空、航天、交通、造船等诸多工程中得到了日益广泛的应用,而其在冲击载荷下的响应和破坏特别是分层一直为学术界所关注。本文中对FRP层合板在冲击载荷下的响应和破坏进行数值模拟,并通过引入粘结层重点研究其分层破坏。首先,介绍一种基于改进的粘结区域方法的粘结层损伤模型;其次,详细介绍了有限元模型建模过程和建模细节;最后,对有限元模型进行验证,并分析分层损伤发生的原因。模拟结果表明,该模型不仅能准确预测FRP层合板在低速冲击载荷下的载荷-时间曲线和载荷-位移曲线,还能成功地预测其分层破坏。
  • 图  1  牵引力-位移准则示意图

    Figure  1.  Schematic diagram of traction-separation law

    图  2  FRP层合板组成示意图

    Figure  2.  Schematic diagram of FRP laminates

    图  3  将粘结单元插入实体单元示意图

    Figure  3.  Illustration of cohesive elements inserted in solid elements

    图  4  低速冲击下CFRP层合板的有限元模型

    Figure  4.  Finite element model for CFRP laminates under low velocity impact

    图  5  数值模拟得到的载荷-时间历程与实验观察[15]的比较

    Figure  5.  Comparison of the numerically predicted load-time histories with the experimental observations[15]

    图  6  数值模拟得到的载荷-位移曲线与实验观察[15]的比较

    Figure  6.  Comparison of the numerically predicted load-displacement cures with the experimental observations[15]

    图  7  数值模拟得到的分层形貌与实验结果[15]的比较

    Figure  7.  Comparison of the numerically predicted delamination areas with the experimental observations[15]

    表  1  模型中用到的粘结层参数

    Table  1.   cohesive interface properties used in present model

    材料参数 数值 材料参数 数值 材料参数 数值
    $ {\tau _{n}^{\left( {\rm{s}} \right)}}$ 11 MPa $ {\tau _{s}^{\left( {\rm{s}} \right)}}$ 17 MPa $ {\tau _{t}^{\left( {\rm{s}} \right)}}$ 17 MPa
    $ {G_{{\rm{IC}}}}$ 0.3 N/mm[17] $ {G_{{\rm{IIC}}}}$ 0.8 N/mm[17] $ {G_{{\rm{IIIC}}}}$ 0.8 N/mm[17]
    $ {K_{n}^{\left( {\rm{s}} \right)}}$ 850 MPa[21] $ {K_{s}^{\left( {\rm{s}} \right)}}$ 850 MPa[21] $ {K_{t}^{\left( {\rm{s}} \right)}}$ 850 MPa[21]
    $ {A_{\rm{i}}}$ 2.5[22] $ {B_{\rm{i}}}$ 0.9[22] $ {C_{\rm{i}}}$ 3.7[22]
    $ {A_{\rm{m}}}$ 1.85[22] $ {B_{\rm{m}}}$ 0.5[22] $ {C_{\rm{m}}}$ 1.3[22]
    下载: 导出CSV

    表  2  Graphite/epoxy单层板的参数值

    Table  2.   Parameters for graphite/epoxy laminates

    材料参数 数值 材料参数 数值 材料参数 数值
    $ {{E}_{11}}$ 143.4 GPa[17] $ {Y_{\rm{t}}}$ 54 MPa[17] $ {{\nu }_{23}}$. 0.52[17]
    $ {{E}_{22}}$ 9.27 GPa[17] $ {{X}_{\rm{c}}}$ 1 650 MPa[17] $ {{\nu }_{13}},{{\nu }_{12}}$ 0.31[17]
    $ {{E}_{33}}$ 9.27 GPa[17] $ {{Y}_{\rm{c}}}$ 240 MPa[17] $ {{\delta }_{1}^{\left( \rm{f} \right)}},\rm{ }{{\delta }_{2}^{\left( \rm{f} \right)}}$ 5.7×10−2 mm[12]
    $ {G_{12}}$ 3.8 GPa[17] $ {Z_{\rm{t}}}$ 54 MPa[17] $ {\delta _7^{\left( {\rm{f}} \right)}}$ 2.7×10−2 mm[12]
    $ {G_{23}}$ 3.2 GPa[17] $ {Z_{\rm{c}}}$ 240 MPa[17] $ {\delta _3^{\left( {\rm{f}} \right)}},{\rm{ }}{\delta _4^{\left( {\rm{f}} \right)}}$ 7.65×10−2 mm[12]
    $ {G_{31}}$ 3.8 GPa[17] $ {S_{12}}$ 100 MPa[17] $ {\delta _5^{\left( {\rm{f}} \right)}}$ 5×10−3 mm[12]
    $ {X_{\rm{t}}}$ 2 945 MPa[17] $ {S_{31}},{S_{23}}$ 100 MPa[17] $ {\delta _6^{\left( {\rm{f}} \right)}}$ 5×10−2 mm[12]
    下载: 导出CSV
  • [1] BOTELHO E C, SILVA R A, PARDINI L C, et al. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures [J]. Materials Research, 2006, 9(3): 247–256. doi: 10.1590/S1516-14392006000300002
    [2] HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates [J]. Composites Science and Technology, 2000, 60(2): 273–281. doi: 10.1016/S0266-3538(99)00126-8
    [3] HOU J P, PETRINIC N, RUIZ C. A delamination criterion for laminated composites under low-velocity impact [J]. Composites Science and Technology, 2001, 61(14): 2069–2074. doi: 10.1016/S0266-3538(01)00128-2
    [4] LUO R K. The evaluation of impact damage in a composite plate with a hole [J]. Composites Science and Technology, 2000, 60(1): 49–58. doi: 10.1016/S0266-3538(99)00095-0
    [5] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664
    [6] MATZENMILLER A, LUBLINER J, Taylor R L. A constitutive model for anisotropic damage in fiber-composites [J]. Mechanics of Materials, 1995, 20(2): 125–152. doi: 10.1016/0167-6636(94)00053-0
    [7] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentration [J]. Journal of Composite Materials, 1987, 21(9): 834–855. doi: 10.1177/002199838702100904
    [8] WILLIAMS K V, VAZIRI R. Application of a damage mechanics model for predicting the impact response of composite materials [J]. Computers and Structures, 2001, 79(10): 997–1011.
    [9] WILLIAMS K V, VAZIRI R, POURSARTIP A. A physically based continuum damage mechanics model for thin laminated composite structures [J]. International Journal of Solids and Structures, 2003, 40(9): 2267–2300. doi: 10.1016/S0020-7683(03)00016-7
    [10] XIAO J R, GAMA B A, GILLESPIE Jr J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. doi: 10.1016/j.compstruct.2005.09.001
    [11] GAMA B A, GILLESPIE Jr J W. Finite element modeling of impact, damage evolution and penetration of thick-section composites [J]. International Journal of Impact Engineering, 2011, 38(4): 181–197. doi: 10.1016/j.ijimpeng.2010.11.001
    [12] XIN S H, WEN H M. A progress damage model for fiber reinforced plastic composites subjected to impact loading [J]. International Journal of Impact Engineering, 2015, 75: 40–52. doi: 10.1016/j.ijimpeng.2014.07.014
    [13] OLSSON R. Analytical prediction of large mass impact damage in composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1207–1215. doi: 10.1016/S1359-835X(01)00073-2
    [14] ESPINOSA H D, DWIVEDI S, LU H C. Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3): 259–290.
    [15] AYMERICH F, PANI C, PRIOLO P. Damage response of stitched cross-ply laminates under impact loadings [J]. Engineering Fracture Mechanics, 2007, 74(4): 500–14. doi: 10.1016/j.engfracmech.2006.05.012
    [16] JOHNSON H E, LOUCA L A, MOURING S, et al. Modeling impact damage in marine composite panels [J]. International Journal of Impact Engineering, 2009, 36(1): 25–39. doi: 10.1016/j.ijimpeng.2008.01.013
    [17] SINGH H, MAHAJAN P. Modeling damage induced plasticity for low velocity impact simulation of three dimensional fiber reinforced composite [J]. Composite Structures, 2015, 131: 290–303. doi: 10.1016/j.compstruct.2015.04.070
    [18] DUGDALE D S. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104. doi: 10.1016/0022-5096(60)90013-2
    [19] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture [J]. Advances in Applied Mechanics, 1962, 7: 55–129. doi: 10.1016/S0065-2156(08)70121-2
    [20] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439–449. doi: 10.1016/0266-3538(96)00005-X
    [21] LONG S, YAO X, ZHANG X. Delamination prediction in composite laminates under low-velocity impact [J]. Composite Structures, 2015, 132: 290–298. doi: 10.1016/j.compstruct.2015.05.037
    [22] XIN S H, WEN H M. Numerical study on the perforation of fiber reinforced plastic laminates struck by high velocity projectiles [J]. Journal of Strain Analysis for Engineering Design, 2012, 47(7): 513–523. doi: 10.1177/0309324712454650
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  4575
  • HTML全文浏览量:  1832
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-30
  • 修回日期:  2017-08-28
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回