Application of cohesive elements in modeling the low-velocity impact responseand failure of fiber reinforced plastic laminates
-
摘要: 纤维增强树脂基复合材料层合板(fibre reinforced plastic composites,FRP)在航空、航天、交通、造船等诸多工程中得到了日益广泛的应用,而其在冲击载荷下的响应和破坏特别是分层一直为学术界所关注。本文中对FRP层合板在冲击载荷下的响应和破坏进行数值模拟,并通过引入粘结层重点研究其分层破坏。首先,介绍一种基于改进的粘结区域方法的粘结层损伤模型;其次,详细介绍了有限元模型建模过程和建模细节;最后,对有限元模型进行验证,并分析分层损伤发生的原因。模拟结果表明,该模型不仅能准确预测FRP层合板在低速冲击载荷下的载荷-时间曲线和载荷-位移曲线,还能成功地预测其分层破坏。
-
关键词:
- 纤维增强树脂基复合材料 /
- 渐进损伤本构模型 /
- 分层 /
- 粘结单元
Abstract: Fiber reinforced plastic laminates (FRP) have been widely applied in modern industries such as aeronautics, astronautics, transportation, naval architecture. The impact response and failure process of FRP laminates are a major concern in academic and engineering community. In this paper, the response and failure of FRP laminates under impact loading are numerically simulated with emphasis being placed upon delamination by cohesive elements. The paper consists of three main parts: a damage model of adhesive layer based on improved cohesive zone method is firstly described; and then followed by constructing a finite element model with some modeling details; finally, the finite element model is validated on experiments, and the reason of delamination damage is delineated. It has been demonstrated that the present model can predict not only the load-time history and the load-displacement curve but also the delamination of FRP laminates under low-velocity impact. -
表 1 模型中用到的粘结层参数
Table 1. cohesive interface properties used in present model
材料参数 数值 材料参数 数值 材料参数 数值 $ {\tau _{n}^{\left( {\rm{s}} \right)}}$ 11 MPa $ {\tau _{s}^{\left( {\rm{s}} \right)}}$ 17 MPa $ {\tau _{t}^{\left( {\rm{s}} \right)}}$ 17 MPa $ {G_{{\rm{IC}}}}$ 0.3 N/mm[17] $ {G_{{\rm{IIC}}}}$ 0.8 N/mm[17] $ {G_{{\rm{IIIC}}}}$ 0.8 N/mm[17] $ {K_{n}^{\left( {\rm{s}} \right)}}$ 850 MPa[21] $ {K_{s}^{\left( {\rm{s}} \right)}}$ 850 MPa[21] $ {K_{t}^{\left( {\rm{s}} \right)}}$ 850 MPa[21] $ {A_{\rm{i}}}$ 2.5[22] $ {B_{\rm{i}}}$ 0.9[22] $ {C_{\rm{i}}}$ 3.7[22] $ {A_{\rm{m}}}$ 1.85[22] $ {B_{\rm{m}}}$ 0.5[22] $ {C_{\rm{m}}}$ 1.3[22] 表 2 Graphite/epoxy单层板的参数值
Table 2. Parameters for graphite/epoxy laminates
材料参数 数值 材料参数 数值 材料参数 数值 $ {{E}_{11}}$ 143.4 GPa[17] $ {Y_{\rm{t}}}$ 54 MPa[17] $ {{\nu }_{23}}$. 0.52[17] $ {{E}_{22}}$ 9.27 GPa[17] $ {{X}_{\rm{c}}}$ 1 650 MPa[17] $ {{\nu }_{13}},{{\nu }_{12}}$ 0.31[17] $ {{E}_{33}}$ 9.27 GPa[17] $ {{Y}_{\rm{c}}}$ 240 MPa[17] $ {{\delta }_{1}^{\left( \rm{f} \right)}},\rm{ }{{\delta }_{2}^{\left( \rm{f} \right)}}$ 5.7×10−2 mm[12] $ {G_{12}}$ 3.8 GPa[17] $ {Z_{\rm{t}}}$ 54 MPa[17] $ {\delta _7^{\left( {\rm{f}} \right)}}$ 2.7×10−2 mm[12] $ {G_{23}}$ 3.2 GPa[17] $ {Z_{\rm{c}}}$ 240 MPa[17] $ {\delta _3^{\left( {\rm{f}} \right)}},{\rm{ }}{\delta _4^{\left( {\rm{f}} \right)}}$ 7.65×10−2 mm[12] $ {G_{31}}$ 3.8 GPa[17] $ {S_{12}}$ 100 MPa[17] $ {\delta _5^{\left( {\rm{f}} \right)}}$ 5×10−3 mm[12] $ {X_{\rm{t}}}$ 2 945 MPa[17] $ {S_{31}},{S_{23}}$ 100 MPa[17] $ {\delta _6^{\left( {\rm{f}} \right)}}$ 5×10−2 mm[12] -
[1] BOTELHO E C, SILVA R A, PARDINI L C, et al. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures [J]. Materials Research, 2006, 9(3): 247–256. doi: 10.1590/S1516-14392006000300002 [2] HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates [J]. Composites Science and Technology, 2000, 60(2): 273–281. doi: 10.1016/S0266-3538(99)00126-8 [3] HOU J P, PETRINIC N, RUIZ C. A delamination criterion for laminated composites under low-velocity impact [J]. Composites Science and Technology, 2001, 61(14): 2069–2074. doi: 10.1016/S0266-3538(01)00128-2 [4] LUO R K. The evaluation of impact damage in a composite plate with a hole [J]. Composites Science and Technology, 2000, 60(1): 49–58. doi: 10.1016/S0266-3538(99)00095-0 [5] HASHIN Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329–334. doi: 10.1115/1.3153664 [6] MATZENMILLER A, LUBLINER J, Taylor R L. A constitutive model for anisotropic damage in fiber-composites [J]. Mechanics of Materials, 1995, 20(2): 125–152. doi: 10.1016/0167-6636(94)00053-0 [7] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentration [J]. Journal of Composite Materials, 1987, 21(9): 834–855. doi: 10.1177/002199838702100904 [8] WILLIAMS K V, VAZIRI R. Application of a damage mechanics model for predicting the impact response of composite materials [J]. Computers and Structures, 2001, 79(10): 997–1011. [9] WILLIAMS K V, VAZIRI R, POURSARTIP A. A physically based continuum damage mechanics model for thin laminated composite structures [J]. International Journal of Solids and Structures, 2003, 40(9): 2267–2300. doi: 10.1016/S0020-7683(03)00016-7 [10] XIAO J R, GAMA B A, GILLESPIE Jr J W. Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading [J]. Composite Structures, 2007, 78(2): 182–196. doi: 10.1016/j.compstruct.2005.09.001 [11] GAMA B A, GILLESPIE Jr J W. Finite element modeling of impact, damage evolution and penetration of thick-section composites [J]. International Journal of Impact Engineering, 2011, 38(4): 181–197. doi: 10.1016/j.ijimpeng.2010.11.001 [12] XIN S H, WEN H M. A progress damage model for fiber reinforced plastic composites subjected to impact loading [J]. International Journal of Impact Engineering, 2015, 75: 40–52. doi: 10.1016/j.ijimpeng.2014.07.014 [13] OLSSON R. Analytical prediction of large mass impact damage in composite laminates [J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(9): 1207–1215. doi: 10.1016/S1359-835X(01)00073-2 [14] ESPINOSA H D, DWIVEDI S, LU H C. Modeling impact induced delamination of woven fiber reinforced composites with contact/cohesive laws [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 183(3): 259–290. [15] AYMERICH F, PANI C, PRIOLO P. Damage response of stitched cross-ply laminates under impact loadings [J]. Engineering Fracture Mechanics, 2007, 74(4): 500–14. doi: 10.1016/j.engfracmech.2006.05.012 [16] JOHNSON H E, LOUCA L A, MOURING S, et al. Modeling impact damage in marine composite panels [J]. International Journal of Impact Engineering, 2009, 36(1): 25–39. doi: 10.1016/j.ijimpeng.2008.01.013 [17] SINGH H, MAHAJAN P. Modeling damage induced plasticity for low velocity impact simulation of three dimensional fiber reinforced composite [J]. Composite Structures, 2015, 131: 290–303. doi: 10.1016/j.compstruct.2015.04.070 [18] DUGDALE D S. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104. doi: 10.1016/0022-5096(60)90013-2 [19] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture [J]. Advances in Applied Mechanics, 1962, 7: 55–129. doi: 10.1016/S0065-2156(08)70121-2 [20] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56(4): 439–449. doi: 10.1016/0266-3538(96)00005-X [21] LONG S, YAO X, ZHANG X. Delamination prediction in composite laminates under low-velocity impact [J]. Composite Structures, 2015, 132: 290–298. doi: 10.1016/j.compstruct.2015.05.037 [22] XIN S H, WEN H M. Numerical study on the perforation of fiber reinforced plastic laminates struck by high velocity projectiles [J]. Journal of Strain Analysis for Engineering Design, 2012, 47(7): 513–523. doi: 10.1177/0309324712454650