高温下带金属壳PBX炸药低速撞击敏感性数值模拟

胡偲 吴艳青 黄风雷

胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟[J]. 爆炸与冲击, 2019, 39(4): 041403. doi: 10.11883/bzycj-2017-0254
引用本文: 胡偲, 吴艳青, 黄风雷. 高温下带金属壳PBX炸药低速撞击敏感性数值模拟[J]. 爆炸与冲击, 2019, 39(4): 041403. doi: 10.11883/bzycj-2017-0254
HU Cai, WU Yanqing, HUANG Fenglei. Numerical simulation of confined PBX charge under low velocity impact at high temperature[J]. Explosion And Shock Waves, 2019, 39(4): 041403. doi: 10.11883/bzycj-2017-0254
Citation: HU Cai, WU Yanqing, HUANG Fenglei. Numerical simulation of confined PBX charge under low velocity impact at high temperature[J]. Explosion And Shock Waves, 2019, 39(4): 041403. doi: 10.11883/bzycj-2017-0254

高温下带金属壳PBX炸药低速撞击敏感性数值模拟

doi: 10.11883/bzycj-2017-0254
基金项目: 科学挑战专题(TZ2016001);国家自然科学基金(11572045,11472051);中物院安全弹药研发中心开放基金(RMC2015B03)
详细信息
    作者简介:

    胡 偲(1994- ),女,博士,3120160068@bit.edu.cn

    通讯作者:

    吴艳青(1974- ),女,博士,教授,wuyqing@bit.edu.cn

  • 中图分类号: O383

Numerical simulation of confined PBX charge under low velocity impact at high temperature

  • 摘要:

    炸药撞击感度和热安全性是评价炸药安全性能的重要指标。为了对高温下炸药撞击敏感性变化规律进行可靠预测,本文中通过数值模拟,研究不同预加热温度下带壳PBX炸药装药在小弹丸低速撞击下的热力学响应,得到炸药点火前至点火阶段局部高温区的位置、形态、温度和应变随时间在炸药中分布的变化。结果显示,炸药发生点火的撞击阈值速度与烤燃温度的关系并非单一随温度升高而降低,而是在加热至348.15 K时达到最高;根据温度和应力应变云图分析可得,随着烤燃温度的提高,炸药强度下降,PBX炸药装药局部高温区快速升温的主导因素由局部剪切变为压缩。热软化对炸药的撞击敏感性起重要作用。

  • 图  1  使用表1参数的应变率-温度-最大流动应力曲面图

    Figure  1.  Maximum flow stress as a function of temperature and strain rate at selected parameters

    图  2  二维轴对称有限元模型及其网格划分示意图

    Figure  2.  Meshing of two-dimensional axisymmetric finite-element model

    图  3  预加热温度为301.15 K时,不同撞击速度下炸药装药的反应过程分数云图

    Figure  3.  Reaction fractions at different impact velocities and a preheating temperature of 301.15 K

    图  4  预加热温度为348.15 K时,不同撞击速度下炸药装药的反应过程分数云图

    Figure  4.  Reaction fractions at different impact velocities and a preheating temperature of 348.15 K

    图  5  预加热温度为378.15 K时,不同撞击速度下炸药装药的反应过程分数云图

    Figure  5.  Reaction fractions at different impact velocities and a preheating temperature of 378.15 K

    图  6  不同预加热温度和撞击速度下炸药装药中的最大反应过程分数

    Figure  6.  The maximum reaction process fraction at different pre-heating temperatures and impact velocities

    图  7  不同预加热温度和撞击速度下PBX炸药装药的平均反应过程分数

    Figure  7.  The average reaction fractions of the PBX charge at different temperatures and impact velocities

    图  8  预加热温度为301.15 K时炸药装药的温度云图

    Figure  8.  Temperature of the explosive charge at a preheating temperature of 301.15 K

    图  9  预加热温度为301.15 K时炸药装药的体积应变云图

    Figure  9.  Volumetric strain of the explosive charge at a preheating temperature of 301.15 K

    图  10  预加热温度为301.15 K炸药装药的等效应变云图

    Figure  10.  Equivalent strain of the explosive charge at a preheating temperature of 301.15 K

    图  11  预加热温度为301.15 K炸药装药的Mises应力云图

    Figure  11.  Mises stress of the explosive charge at a preheating temperature of 301.15 K

    图  12  预加热温度为348.15 K时炸药装药的温度云图

    Figure  12.  Temperature of the explosive charge at a preheating temperature of 348.15 K

    图  13  预加热温度为348.15 K时炸药装药的体积应变云图

    Figure  13.  Volume strain of the explosive charge at a preheating temperature of 348.15 K

    图  14  预加热温度为348.15 K炸药装药的等效应变云图

    Figure  14.  Equivalent strain of the explosive charge at a preheating temperature of 348.15 K

    图  15  预加热温度为348.15 K炸药装药的Mises应力云图

    Figure  15.  Mises stress of the explosive charge at a preheating temperature of 348.15 K

    图  16  预加热温度为378.15 K时炸药装药的温度云图

    Figure  16.  Temperature of the explosive charge at a preheating temperature of 378.15 K

    图  17  预加热温度为378.15 K时炸药装药的体积应变云图

    Figure  17.  Volumetric strain of the explosive charge at a preheating temperature of 378.15 K

    图  18  预加热温度为378.15 K炸药装药的等效应变云图

    Figure  18.  Equivalent strain of the explosive charge at a preheating temperature of 378.15 K

    图  19  预加热温度为378.15 K炸药装药的Mises应力云图

    Figure  19.  Mises stress of the explosive charge at a preheating temperature of 378.15 K

    图  20  局部高温区的位置变化

    Figure  20.  The change of the locations of localized heating at different preheating temperatures

    图  21  不同预加热温度下PBX炸药中局部高温区的温度时间曲线

    Figure  21.  Temperature as a function of time for the localized heating regions at different preheating temperatures

    图  22  不同预加热温度下PBX炸药中局部高温区的塑性功时间曲线

    Figure  22.  Plastic work as a function of time for the localized heating regions at different preheating temperatures

    图  23  不同预加热温度下PBX炸药中局部高温区内能时程曲线

    Figure  23.  Histories of internal energy for the localized heating regions at different preheating temperatures

    表  1  Johnson–Cook强度模型参数

    Table  1.   Parameters of Johnson–Cook model

    A/MPa B/MPa C m n Tref/K Tm/K
    15 0 0.2 0.6 1 301.15 540
    下载: 导出CSV

    表  2  固体反应物的状态方程参数

    Table  2.   Equation of the state parameters for solid reactants

    pcrush/MPa μcrush K1 K2 K3 Klock μlock
    0.689 5 0.125×10−3 0.102 7×1011 0.217 2×1012 0.288 8×1013 0.665 4×1011 0.09
    下载: 导出CSV

    表  3  气体产物的状态方程参数

    Table  3.   Equation of the state parameters for gaseous products

    R1/GPa R2 R3/GPa R4 ω
    166.89 5.9 5.969 2.1 0.45
    下载: 导出CSV

    表  4  PBX化学动力学参数

    Table  4.   Chemical kinetic parameters for PBX

    No. Zk/s−1 Ea k/(kJ·g−1·mol·K)
    1 1.08×1026 148.93
    2 1.41×1021 220.64
    3 2.60×1016 185.48
    下载: 导出CSV

    表  5  用于温度计算的参数

    Table  5.   Parameters for temperature calculation

    TCJ/K vCJ/cm3/g R5/GPa CV, s/(J·kg−1·K−1) CV, CJ/(J·kg−1·K−1)
    2 500 0.387 3 0.85 1 600 2 000
    下载: 导出CSV
  • [1] KIM S, BARUA A, HORIE Y, et al. Prediction of probabilistic ignition behavior of PBXs from microstructural stochasticity[C]// Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter, 2013.
    [2] PERRY W L, ZUCKER J, DICKSON P M, et al. Interplay of explosive thermal reaction dynamics and structural confinement [J]. Journal of Applied Physics, 2007, 101(7): 074901–5. DOI: 10.1063/1.2713090.
    [3] ASANTE D O, KIM S, CHAE J, et al. CFD cook-off simulation and thermal decomposition of confined high energetic material [J]. Propellants Explosives Pyrotechnics, 2015, 40(5): 699–705. DOI: 10.1002/prep.201400296.
    [4] CHIDESTER S K, GREEN L G, LEE C G. A frictional work predictive method for the initiation of solid high explosives from low-pressure impacts[R]. California, the United States: Lawrence Livermore National Laboratory, 1993.
    [5] BERGHOUT H L, SON S F, SKIDMORE C B, et al. Combustion of damaged PBX 9501 explosive [J]. Thermochimica Acta, 2002, 384(1-2): 261–77. DOI: 10.1016/S0040-6031(01)00802-4.
    [6] 张文英, 邓晓雅, 陈思瑾, 等. PBX9501热感度、热膨胀及力学性能的分子动力学模拟 [J]. 火炸药学报, 2016, 39(3): 32–6. DOI: 10.14077/j.issn.1007-7812.2016.03.006

    ZHANG Wenying, DENG Xiaoya, CHEN Sijin, et al. Molecular dynamics simulation of thermal sensitivity, thermal expansion and mechanical properties of PBX9501 [J]. Chinese Journal of Explosives and Propellants, 2016, 39(3): 32–6. DOI: 10.14077/j.issn.1007-7812.2016.03.006
    [7] SHUKLA P, DEEPU M. Experimental and numerical investigations of thermal ignition of a phase changing energetic material [J]. Defence Science Journal, 2016, 66(3): 228–35. DOI: 10.14429/dsj.66.9357.
    [8] DICKSON P, ASAY B, HENSON B, et al. Thermal cook-off response of confined PBX 9501[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2004.
    [9] BURNHAM K, WEESE R K, WEMHOFF A P, et al. A historical and current perspective on predicting thermal cookoff behavior [J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2): 407–15. DOI: 10.1007/s10973-006-8161-6.
    [10] GUSHANOV A R, VOLODINA N A, BELOV G V, et al. Numerical simulation of experiments on the low- velocity impact on HMX- based HE using explosive transformation initiation kinetics [J]. Journal of Energetic Materials, 2010, 28(S1): 50–65. DOI: 10.1080/07370651003720429.
    [11] DRODGE D R, WILLIAMSON D M. Understanding damage in polymer-bonded explosive composites [J]. Journal of Materials Science, 2016, 51(2): 668–79. DOI: 10.1007/s10853-013-7378-6.
    [12] WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Mesoscale evolution of voids and microstructural changes in HMX-based explosives during heating through the beta-delta phase transition [J]. Journal of Applied Physics, 2015, 118(5): 055901. DOI: 10.1063/1.4927614.
    [13] YAN Q L, ZEMAN S, SANCHEZ-JIMENEZ P E, et al. The effect of polymer matrices on the thermal hazard properties of RDX-based PBXs by using model-free and combined kinetic analysis [J]. Journal of Hazardous Materials, 2014, 271(1): 85–95. DOI: 10.1016/j.jhazmat.2014.02:019.
    [14] FORBES J, TARVER C, URTIEW P, et al. The effects of confinement and temperature on the shock sensitivity of solid explosives[C]//The 11th International Detonation Symposium. Snowmass, Colorado, 1998.
    [15] SANDUSKY H W, ANDREWS S A, ALEXANDER K E. Hazard tests on a heated TATB-based high explosive[C]//The 11th International Detonation Symposium. Snowmass, Colorado, 1998.
    [16] DAI X G, WEN Y S, HUANG H, et al. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer-bonded explosives under different temperatures [J]. Journal of Applied Physics, 2013, 114(11): 114906. DOI: 10.1063/1.4820248.
    [17] GRUAU C, PICART D, BELMAS R, et al. Ignition of a confined high explosive under low velocity impact [J]. International Journal of Impact Engineering, 2009, 36(4): 537–50. DOI: 10.1016/j.ijimpeng.2008.08.002.
    [18] APPAN A S, RENLUND A M, STACHOWIAK J C, et al. Mechanical properties determination by real-time ultrasonic characterization of thermally damaged energetic materials[C]//The 12th International Detonation Symposium. 2002.
    [19] DAVANDE H, BEDROV D, SMITH G D. Thermodynamic, transport, and viscoelastic properties of PBX-9501 binder: a molecular dynamics simulations study[J]. Journal of Energetic Materials, 2008, 26(2): 115−38. DOI: 10.1080/07370650701801937.
    [20] HOLMQUIST T J, JOHNSON G R. Determination of constants and comparison of results for various constitutive models [J]. Journal De Physique Iii, 1991, 1(C3): 853–60. DOI: 10.1051/Jp4:19913119.
    [21] GRAY III G, IDAR D, BLUMENTHAL W, et al. High-and low-strain rate compression properties of several energetic material composites as a function of strain rate and temperature: LA-UR-98-3059[R]. Los Alamos National Laboratory, 1998.
    [22] PARKER G R, PETERSON P D, ASAY B W, et al. Examination of morphological changes that affect gas permeation through thermally damaged explosives [J]. Propellants Explosives Pyrotechnics, 2004, 29(5): 274–81. DOI: 10.1002/prep.200400057.
    [23] PETERSON P D, MANG J T, ASAY B W. Quantitative analysis of damage in an octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazonic-based composite explosive subjected to a linear thermal gradient [J]. Journal of Applied Physics, 2005, 97(9): 7. DOI: 10.1063/1.1879072.
    [24] WANG X J, WU Y Q, HUANG F L. Thermal-mechanical-chemical responses of polymer-bonded explosives using a mesoscopic reactive model under impact loading [J]. Journal of Hazardous Materials, 2017, 321(2): 56–67. DOI: 10.1016/j.jhazmat.2016.08.061.
    [25] YOH J J, MCCLELLAND M A, MAIENSCHEIN J L, et al. Simulating thermal explosion of octahydrotetranitrotetrazine-based explosives: Model comparison with experiment [J]. Journal of Applied Physics, 2006, 100(7): 9. DOI: 10.1063/1.2357418.
    [26] TARVER C M, CHIDESTER S K. On the violence of high explosive reactions [J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 2005, 127(1): 39–48. DOI: 10.1115/1.1845474.
    [27] HANDLEY C A. Numerical modelling of two HMX-based plastic-bonded explosives at the mesoscale[D]. University of St Andrews, 2011,
    [28] MENIKOFF R, SEWELL T D. Constituent properties of HMX needed for mesoscale simulations [J]. Combustion Theory and Modelling, 2002, 6(1): 103–25. DOI: 10.1088/1364-7830/6/1/306.
    [29] HORIE Y. Hot spots, high explosives ignition, and material microstructure[C]//Materials Science Forum, 2014.
    [30] DIENES J K, ZUO Q H, KERSHNER J D. Impact initiation of explosives and propellants via statistical crack mechanics [J]. Journal of the Mechanics & Physics of Solids, 2006, 54(6): 1237–75. DOI: 10.1016/j.jmps.2005.12.001.
    [31] MENIKOFF R. Detonation waves in PBX 9501 [J]. Combustion Theory and Modelling, 2006, 10(6): 1003–21. DOI: 10.1080/13647830600851754.
    [32] HENSON B, ASAY B W, DICKSON P M, et al. Measurement of explosion time as a function of impact pressure for PBX 9501 subject to weak planar shocks[R]. Office of Scientific & Technical Information Technical Reports, 1997.
  • 加载中
图(23) / 表(5)
计量
  • 文章访问数:  6059
  • HTML全文浏览量:  2417
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 修回日期:  2017-12-21
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回