含预制裂纹L形梁柱试件动态断裂过程

李清 薛耀东 于强 徐文龙 韦贵华

李清, 薛耀东, 于强, 徐文龙, 韦贵华. 含预制裂纹L形梁柱试件动态断裂过程[J]. 爆炸与冲击, 2018, 38(3): 491-500. doi: 10.11883/bzycj-2017-0255
引用本文: 李清, 薛耀东, 于强, 徐文龙, 韦贵华. 含预制裂纹L形梁柱试件动态断裂过程[J]. 爆炸与冲击, 2018, 38(3): 491-500. doi: 10.11883/bzycj-2017-0255
LI Qing, XUE Yaodong, YU Qiang, XU Wenlong, WEI Guihua. Dynamic fracture processes of L-shaped beam-column specimens with prefabricated cracks[J]. Explosion And Shock Waves, 2018, 38(3): 491-500. doi: 10.11883/bzycj-2017-0255
Citation: LI Qing, XUE Yaodong, YU Qiang, XU Wenlong, WEI Guihua. Dynamic fracture processes of L-shaped beam-column specimens with prefabricated cracks[J]. Explosion And Shock Waves, 2018, 38(3): 491-500. doi: 10.11883/bzycj-2017-0255

含预制裂纹L形梁柱试件动态断裂过程

doi: 10.11883/bzycj-2017-0255
基金项目: 

国家自然科学基金项目 51374212

详细信息
    作者简介:

    李清(1969-), 男, 博士, 教授

    通讯作者:

    薛耀东, xuecumtb@163.com

  • 中图分类号: O348.1

Dynamic fracture processes of L-shaped beam-column specimens with prefabricated cracks

  • 摘要: 针对含预制裂纹L形梁柱试件,为研究预制裂纹动态扩展的力学特征及其对梁柱试件破坏模式的影响,采用数字动态焦散线实验系统,对距节点核心区不同距离l处含有预制裂纹的试件进行落锤冲击实验,得到预制裂纹的扩展轨迹、速度、动态应力强度因子的变化规律。结果表明,l值增大,扩展裂纹在梁下边缘的贯通点与预制裂纹的夹角逐渐增大,曲裂程度变大。裂纹扩展速度随着l的增大振荡性增强,裂纹扩展平均速度逐渐降低。l值为2 mm时,裂尖表现为Ⅰ型断裂,l值增大,裂尖受到剪应力作用增强,Ⅰ型动态应力强度因子减小,Ⅱ型动态应力强度因子增大,断裂逐渐转变为Ⅰ-Ⅱ复合型。
  • 图  1  焦散线成像原理图

    Figure  1.  Schematic diagram of caustic formation

    图  2  Ⅰ型和Ⅰ-Ⅱ复合型裂纹尖端焦散斑形状

    Figure  2.  Caustic shapes at crack tip under mode Ⅰand mixed mode

    图  3  焦散线成像原理图

    Figure  3.  Schematic diagram of caustic formation

    图  4  实验光路图

    Figure  4.  Schematic diagram of experimental optical system

    图  5  落锤冲击加载装置(单位:mm)

    Figure  5.  Drop hammer impact system (unit: mm)

    图  6  试件断裂示意图

    Figure  6.  Fracture diagrams of specimens

    图  7  动态焦散斑图片

    Figure  7.  Digital dynamic speckle photos

    图  8  裂纹扩展水平位移和竖向位移时程曲线

    Figure  8.  Horizontal and vertical displacements ofcrack propagation varying with time

    图  9  裂纹扩展方向与竖直方向夹角的时程曲线

    Figure  9.  Angle between crack propagation direction and vertical direction varying with time

    图  10  裂纹贯通点位置变化示意图

    Figure  10.  Sketch map of penetration point position

    图  11  裂纹扩展轨迹图

    Figure  11.  Trajectory diagram of crack propagation

    图  12  裂纹扩展速度时程曲线

    Figure  12.  The curves of crack propagation velocity versus time

    图  13  动态应力强度因子时程曲线

    Figure  13.  The curves of dynamic intensity stress factor versus time

    图  14  裂纹驱动力与裂纹扩展长度的关系[20]

    Figure  14.  Relationship between crack driving force and crack propagation length[20]

  • [1] 郑云, 叶列平, 岳清瑞.CFRP板加固含裂纹受拉钢板的疲劳性能研究[J].工程力学, 2007, 24(6):91-97. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gclx200706016

    ZHENG Yun, YE Lieping, YUE Qingrui. Study on fatigue behavior of cracked tensile steel plates reinforced with CFRP plates[J]. Engineering Mechanics, 2007, 24(6):91-97. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gclx200706016
    [2] 范国玺, 宋玉谱, 王立成.钢筋混凝土框架结构梁柱中节点动态力学性能试验研究[J].振动与冲击, 2015, 34(12):58-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201512011

    FAN Guoxi, SONG Yupu, WANG Licheng. Experimental study on dynamic mechanical properties of interior RC frame beam-column joints[J]. Journal of Vibration and Shock, 2015, 34(12):58-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201512011
    [3] 王元清, 周晖, 石永久, 等.基于裂纹扩展阻力曲线的钢结构构件断裂行为评估模型[J].清华大学学报(自然科学版), 2013, 53(5), 595-600. http://mall.cnki.net/magazine/Article/QHXB201305002.htm

    WANG Yuanqing, ZHOU Hui, SHI Yongjiu, et al. Fracture behavior evaluation model for steel structural components based on crack extension resistance curves[J]. Journal of Tsinghua University (Science & Technology), 2013, 53(5):595-600. http://mall.cnki.net/magazine/Article/QHXB201305002.htm
    [4] 王志华, 赵勇刚, 马宏伟.梁结构中裂纹参数识别方法研究[J].计算力学学报, 2006, 23(3):307-312. https://www.wenkuxiazai.com/doc/4e69730502020740be1e9b4a.html

    WANG Zhihua, ZHAO Yonggang, MA Hongwei. Investigation on crack identification in the beam-type structures[J]. Chinese Journal of Computational Mechanics, 2006, 23(3):307-312. https://www.wenkuxiazai.com/doc/4e69730502020740be1e9b4a.html
    [5] 周晖, 王元清, 石永久, 等.基于微观机理的梁柱节点焊接细节断裂分析[J].工程力学, 2015, 32(5):37-50. http://or.nsfc.gov.cn/bitstream/00001903-5/296412/1/1000014168465.pdf

    ZHOU Hui, WANG Yuanqing, SHI Yongjiu, et al. Fracture analysis of welded details in beam-to-column connections using macromechanics-based models[J]. Engineering Mechanics, 2015, 32(5):37-50. http://or.nsfc.gov.cn/bitstream/00001903-5/296412/1/1000014168465.pdf
    [6] RUAN H H, YU T X. Deformation mechanism and defect sensitivity of notched free-free beam and cantilever beam under impact[J]. International Journal of Impact Engineering, 2003, 28(1):33-63. doi: 10.1016/S0734-743X(02)00024-6
    [7] LIU J, ZHU W D, CHARALAMBIDES P G, et al. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips[J]. Journal of Sound and Vibration, 2016, 382:274-290. doi: 10.1016/j.jsv.2016.04.036
    [8] MANOGG P. International conference on the physics of non-crystalline solids[M]. Netherlands, 1964:481-490.
    [9] THEOCARIS P S, PAPADOUPOUS G A. The influence of geometry of edge-cracked plates on K and K components of the stress intensity factor studied by caustics[J]. Journal of Physics D:Applied Physics, 1984, 17(12):2339-2349. doi: 10.1088/0022-3727/17/12/003
    [10] YAO X F, JIN G C, ARAKAWA K, et al. Experimental studies on dynamic fracture behavior of thin plates with parallel single edge cracks[J]. Polymer Testing, 2002, 21(8):933-940. doi: 10.1016/S0142-9418(02)00037-5
    [11] YANG R S, XU P, YUE Z W, et al. Dynamic fracture analysis of crack-defect interaction for mode I running crack using digital dynamic caustic method[J]. Engineering Fracture Mechanics, 2016, 161:63-75. doi: 10.1016/j.engfracmech.2016.04.042
    [12] 李清, 刘绍兴, 苏鹏, 等.预制裂纹梁柱节点冲击破坏过程的动态焦散线实验研究[J].振动与冲击, 2008, 27(10):23-26. doi: 10.3969/j.issn.1000-3835.2008.10.006

    LI Qing, LIU Shaoxing, SU Peng, et al. Experimental study on impactive fracture behavior of a beam-column connection with cracks by caustic method[J]. Journal of Vibration and Shock, 2008, 27(10):23-26. doi: 10.3969/j.issn.1000-3835.2008.10.006
    [13] 王综秩, 王元清, 杜新喜, 等.有机玻璃与不锈钢连接节点承载性能试验研究[J].东南大学学报(自然科学版), 2016, 46(1):105-109. doi: 10.3969/j.issn.1001-0505.2016.01.018

    WANG Zongzhi, WANG Yuanqing, DU Xinxi, et al. Experimental research on bearing capacity of joint of acrylic and stainless steel[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(1):105-109. doi: 10.3969/j.issn.1001-0505.2016.01.018
    [14] 黄川腾. 空心楼盖结构分析方法及板柱节点冲切问题研究[D]. 重庆: 重庆大学, 2015: 41-48. http://cdmd.cnki.com.cn/Article/CDMD-10611-1016704798.htm
    [15] 赵秋, 陈宝春, 郭智勇, 等.新月形拱-连续梁组合桥梁结构体系试验研究[J].土木工程学报, 2015, 48(增刊1):8-14. http://www.cnki.com.cn/Article/CJFDTotal-TMGC2015S1003.htm

    ZHAO Qiu, CHEN Baochun, GUO Zhiyong, et al. Experimental studies on crescent arch-continuous beam composite bridge structures[J]. China Civil Engineering Journal, 2015, 48(suppl 1):8-14. http://www.cnki.com.cn/Article/CJFDTotal-TMGC2015S1003.htm
    [16] BEINERT J, KALTHOFF J F. Experimental determination of dynamic stress intensity factors by shadow patterns[M]. Netherlands:Springer, 1981:281-330.
    [17] KALTHOFF J F. Shadow optical method of caustics[M]//Handbook on Experimental Mechanics. New York:Prentice Hall, 1987:430-500.
    [18] TAKAHASHI K, ARAKAWA K. Dependence of crack acceleration on the dynamic stress-intensity factor in polymers[J]. Experimental Mechanics, 1987, 27(2):195-200. doi: 10.1007/BF02319474
    [19] ZHANG Q B. A review of dynamic experimental techniques and mechanical behavior of rock materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4):1411-1478. doi: 10.1007/s00603-013-0463-y
    [20] BROKE D. Elementary engineering fracture mechanics[M]. Martinus Nijho Publishers, 1982:154-156.
  • 加载中
图(14)
计量
  • 文章访问数:  5373
  • HTML全文浏览量:  1409
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-09-25
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回