Compressive mechanical properties of polyethylene at different strain rates
-
摘要: 为了研究聚乙烯材料在不同应变率下的压缩力学性能,通过准静态实验和动态实验获得聚乙烯材料不同应变率下的应力应变曲线,分析发现:聚乙烯的弹性模量和屈服强度随应变率增大而增大,具有明显的黏弹塑性;聚乙烯材料进入塑性阶段,其应力应变曲线在不同应变率下具有相近的变化趋势,即塑性切向模量近似相同。根据聚乙烯材料的压缩力学性能,建立了弹性区、屈服点和塑性区的分段本构模型。该模型的屈服点和塑性段与实验结果吻合较好,由于弹性段采用线弹性模型,与实验结果存在一定偏差,可近似描述材料的弹性行为。Abstract: In this work, we studied the compressive mechanical properties of polyethylene at different strain rates and obtained the stress-strain curves of polyethylene at different strain rates using static and dynamic experiments. We analyzed the stress-strain curves of polyethylene and discovered that the elastic modulus and the yield strength of polyethylene increase with the increase of the strain rate, and polyethylene has obvious viscoelasticity. The stress-strain curves have similar trends at different strain rates after polyethylene enters the plastic stage. We established a constitutive model of elastic zone, yield point and plastic zone according to compressive mechanical properties of polyethylene. The yield point and the plastic section of the model are in good agreement with the experimental results. As the elastic section adopts the linear elastic model, a certain deviation from the experimental results was observed, which can approximately describe the elastic behavior of the material.
-
Key words:
- polyethylene /
- compressive property /
- strain rate /
- constitutive model
-
表 1 参数拟合结果
Table 1. Fitted parameters
${\dot \varepsilon } $/s-1 A B C/MPa D σi/MPa $ {\dot \varepsilon }$0/s-1 m n < 1 000 0.086 2 0.718 2 9 684.904 1.916 1 19.457 4 2.178 7×108 1.07 0.482 87 ≥1 000 5.065 8 -14.363 8 -
[1] 徐立志, 杜忠华, 杜成鑫, 等.壳体切缝的结构参数对PELE横向效应的影响[J].含能材料, 2016, 24(8):742-746.DOI: 10.11943/j.issn.1006-9941.2016.08.003.XU Lizhi, DU Zhonghua, DU Chengxin, et al. Effect of structure parameters of the jacket breakage on lateral effect of PELE[J]. Chinese Journal of Energetic Materials, 2016, 24(8):742-746. DOI: 10.11943/j.issn.1006-9941.2016.08.003. [2] PAULUS G, SCHIRM V. Impact behavior of PELE projectiles perforating thin target plates[J]. International Journal of Impact Engineering, 2006, 33(1-12):566-579. DOI: 10.1016/j.ijimpeng.2006.09.026. [3] DU Zhonghua, SONG Lili, ZHONG Kun, et al. Influence of the ratio of inner to outer diameter on penetrator with enhanced lateral efficiency[J]. Journal of Computational and Theoretical Nanoscience, 2011, 4(4):1525-1528. DOI: 10.1166/asl.2011.1493. [4] 蒋建伟, 张谋, 门建兵, 等.不同内核材料PELE弹丸对多层靶穿甲实验研究[J].北京理工大学学报, 2010, 30(9):1009-1012.DOI: 10.15918/j.tbit1001-0645.2010.09.009.JIANG Jianwei, ZHANG Mou, MEN Jianbing, et al. Experimental study on multi-layered target penetration of PELE with different cores[J]. Transactions of Beijing Institute of Technology, 2010, 30(9):1009-1012. DOI: 10.15918/j.tbit1001-0645.2010.09.009. [5] 朱建生, 赵国志, 杜忠华.装填材料对PELE效应的影响[J].弹道学报, 2007, 19(2):62-65.DOI: 10.3969/j.issn.1004-499X.2007.02.017.ZHU Jiansheng, ZHAO Guozhi, DU Zhonghua. Influence of the filling material on the PELE effect[J]. Journal of Ballistics, 2007, 19(2):62-62. DOI: 10.3969/j.issn.1004-499X.2007.02.017. [6] XU Mingming, HUANG Guangyuan, FENG Shunshan, et al. Static and dynamic properties of semi-crystalline polyethylene[J]. Polymers, 2016, 8(4):77. DOI: 10.3390/polym8040077. [7] NISHIDA M, NATSUME R, HAYASHI M. Strain rate dependence of yield condition of polyamide 11[M]//Dynamic Behavior of Materials, Volume 1. Springer International Publishing, 2014: 121-127. DOI: 10.1007/978-3-319-00771-7_15. [8] DUAN Y, SAIGAL A, GREIF R, et al. A uniform phenomenological constitutive model for glassy and semi-crystalline polymers[J]. Polymer Engineering and Science, 2001, 41(8):1322-1328. DOI: 10.1002/pen.10832. [9] MULLIKEN A D, BOYCE M C. Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates[J]. International Journal of Solids and Structures, 2006, 43(5):1331-1356. DOI: 10.1016/j.ijsolstr.2005.04.016. [10] DAR U A, ZHANG Weihong, XU Yingjie, et al. Thermal and strain rate sensitive compressive behavior of polycarbonate polymer-experimental and constitutive analysis[J]. Journal of Polymer Research, 2014, 21(8):1-10. DOI: 10.1007/s10965-014-0519-z. [11] YU Peng, YAO Xiaohua, HAN Qiang, et al. A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates andtemperatures[J]. Polymer, 2014, 55(25):6577-6593. DOI: 10.1016/j.polymer.2014.09.071. [12] ZHOU Yuanxin, RANGARI V, MAHFUZ H, et al. Experimental study on thermal and mechanical behavior of polypropylene, talc/polypropylene and polypropylene/clay nanocomposites[J]. Materials Science and Engineering A, 2005, 402(1):109-117. DOI: 10.1016/j.msea.2005.04.014. [13] 郑文龙.GB/T 7314-2005《金属材料室温压缩试验方法》实施要点[J].工程与试验, 2006, 46(4):55-70.DOI: 10.3969/j.issn.1674-3407.2006.04.017.ZHENG Wenlong. GB/T 7314-2005 points of the testing method used for metal materials in compression at ambient temperature[J]. Test Technology and Testing Machine, 2006, 46(4):55-70. DOI: 10.3969/j.issn.1674-3407.2006.04.017. [14] 唐志平.横观各向同性材料动态力学性能试验中的试件最佳尺寸[J].爆炸与冲击, 1985, 5(2):3-12. http://www.bzycj.cn/CN/abstract/abstract11125.shtmlTANG Zhiping. Optimum size of transversal isotropic specimen in dynamic testing using the split hopkinson pressure bar[J]. Explosion and Shock Waves, 1985, 5(2):3-12. http://www.bzycj.cn/CN/abstract/abstract11125.shtml [15] 高光发, 李永池, 刘卫国.多孔硬脆性材料的SHPB实验技术[J].力学与实践, 2011, 33(6):35-39.DOI: 10.6052/1000-0879-lxysj2010-178.GAO Guangfa, LI Yongchi, LIU Weiguo. Experimentaltechnology of SHPB forporous hard and brittle materials[J]. Mechanics in Engineering, 2011, 33(6):35-39. DOI: 10.6052/1000-0879-lxysj2010-178. [16] 卢芳云, CHEN W, FREW D J.软材料的SHPB实验设计[J].爆炸与冲击, 2002, 22(1):15-19. doi: 10.3321/j.issn:1001-1455.2002.01.003LU Fangyun, CHEN W, FREW D J. A design of SHPB experiments for soft materials[J]. Explosion and Shock Waves, 2002, 22(1):15-19. doi: 10.3321/j.issn:1001-1455.2002.01.003 [17] PHILLIPS A, MOON H. An experimental investigation concerning yield surfaces and loading surface[J]. ActaMechanica, 1977, 27(1-4):91-102. DOI: 10.1007/BF01180078. [18] 金涛.半晶态聚合物屈服行为及宏观唯象本构研究[D].太原: 太原理工大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10112-1016714312.htmJIN Tao. Yield behavior and macroscopic phenomenological constitutive of semi-crystalline polymer[D]. Taiyuan: Taiyuan University of Technology, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10112-1016714312.htm [19] RICHETON J, AHZI S, VECCHIO K S, et al. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers:Characterization and modeling of the compressive yield stress[J]. International Journal of Solids and Structures, 2006, 43(7-8):2318-2335. DOI: 10.1016/j.ijsolstr.2005.06.040. [20] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics. 1983. [21] OMAR M F, AKIL H M, AHMAD Z A. Effect of molecular structures on dynamic compression properties of polyethylene[J]. Materials Science and Engineering A, 2012, 538(11):125-134. DOI: 10.1016/j.msea.2011.12.111.