多胞材料的动态应力应变状态及其一致近似关系

王鹏 朱长锋 郑志军 虞吉林

王鹏, 朱长锋, 郑志军, 虞吉林. 多胞材料的动态应力应变状态及其一致近似关系[J]. 爆炸与冲击, 2019, 39(1): 013102. doi: 10.11883/bzycj-2017-0280
引用本文: 王鹏, 朱长锋, 郑志军, 虞吉林. 多胞材料的动态应力应变状态及其一致近似关系[J]. 爆炸与冲击, 2019, 39(1): 013102. doi: 10.11883/bzycj-2017-0280
WANG Peng, ZHU Changfeng, ZHENG Zhijun, YU Jilin. Dynamic stress-strain states of cellular materials and a uniformly approximated relation[J]. Explosion And Shock Waves, 2019, 39(1): 013102. doi: 10.11883/bzycj-2017-0280
Citation: WANG Peng, ZHU Changfeng, ZHENG Zhijun, YU Jilin. Dynamic stress-strain states of cellular materials and a uniformly approximated relation[J]. Explosion And Shock Waves, 2019, 39(1): 013102. doi: 10.11883/bzycj-2017-0280

多胞材料的动态应力应变状态及其一致近似关系

doi: 10.11883/bzycj-2017-0280
基金项目: 

国家自然科学基金 11372308

国家自然科学基金 11772330

详细信息
    作者简介:

    王鹏(1988-), 男, 博士, 助理研究员

    通讯作者:

    郑志军, zjzheng@ustc.edu.cn

  • 中图分类号: O347.3

Dynamic stress-strain states of cellular materials and a uniformly approximated relation

  • 摘要: 多胞材料在高速冲击下呈现出逐层压溃的变形模式,塑性冲击波模型可以用来表征这种集中变形带的传播行为。本文中采用截面应力计算方法得到了随机蜂窝在恒速冲击下的一维应力分布,进而对冲击波的传播规律进行了分析。比较了高速冲击下由不同方法得到的冲击波速度与冲击速度的关系,结果表明R-PP-L(率无关,刚性-理想塑性-锁定)模型高估了冲击波速度,但R-PH(率无关,刚性-塑性硬化)模型以及一维冲击波理论得到的冲击波速度与有限元结果比较接近。冲击波速度与冲击速度在高速情形下趋于线性关系,但随着冲击速度的减小,冲击波速度不断减少并趋于常数。根据这一特征和塑性冲击波模型,发展了可以表征冲击波速度与冲击速度的关系、动态应力应变关系的一致近似模型。
  • 图  1  Voronoi蜂窝试件细观有限元模型

    Figure  1.  A cell-based finite element model of a Voronoi honeycomb specimen

    图  2  两种冲击速度下的应力分布图

    Figure  2.  One-dimensional stress distributions at two impact velocities

    图  3  一维的应力分布及其应力梯度分布

    Figure  3.  One-dimensional stress distributions and the corresponding stress gradients

    图  4  不同冲击速度下冲击波位置随时间的关系

    Figure  4.  Variation of shock front position with impact time at different impact velocities

    图  5  一维应力和应变分布及其理想化

    Figure  5.  One-dimensional stress and strain distributions and the idealizations

    图  6  不同方法得到的冲击波速度的比较

    Figure  6.  Comparison of shock wave speeds obtained using different methods

    图  7  冲击波速度与冲击速度的关系

    Figure  7.  Variations of the shock wave speed with the impact velocity

    图  8  波后应变和波后应力随冲击速度的变化

    Figure  8.  Variations of strain and stress behind shock front with impact velocity

    图  9  不同冲击速度下的速度分布

    Figure  9.  Velocity distributions at different impact velocities

    图  10  准静态及动态应力应变关系

    Figure  10.  Quasi-static and dynamic stress-strain relations

  • [1] REID S R, BELL W W, BARR R A. Structural plastic shock model for one-dimensional ring systems[J]. International Journal of Impact Engineering, 1983, 1(2):175-191.DOI: 10.1016/0734-743X(83)90005-2.
    [2] REID S R, PENG C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6):531-570. DOI: 10.1016/S0734-743X(97)00016-X.
    [3] ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures:A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1):650-664. DOI: 10.1016/j.ijimpeng.2005.05.007.
    [4] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22):3988-3998. DOI: 10.1016/j.ijsolstr.2009.07.024.
    [5] 张新春, 刘颖, 章梓茂.组合蜂窝材料面内冲击性能的研究[J].工程力学, 2009, 26(6):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900938825

    ZHANG Xinchun, LIU Ying, ZHANG Zimao. Research on dynamic properties of suppercell honeycomb structures under in-plane impact loading[J]. Engineering Mechanics, 2009, 26(6):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900938825
    [6] 胡玲玲, 蒋玲.胞孔构型对金属蜂窝动态力学性能的影响机理[J].爆炸与冲击, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.

    HU Lingling, JIANG Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.
    [7] ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176. DOI: 10.1016/j.ijimpeng.2007.11.008.
    [8] LIAO S F, ZHENG Z J, YU J L. Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity[J]. International Journal of Impact Engineering, 2013, 57(1):7-16. DOI: 10.1016/j.ijimpeng.2013.01.008.
    [9] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ:"Shock"theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2206-2230. DOI: 10.1016/j.jmps.2005.05.003.
    [10] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅰ:Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2174-2205. DOI: 10.1016/j.jmps.2005.05.007.
    [11] ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials:A unified framework of plastic shock wave models[J]. International Journal of Impact Engineering, 2013, 53(1):29-43. DOI: 10.1016/j.ijimpeng.2012.06.012.
    [12] 王长峰, 郑志军, 虞吉林.泡沫杆撞击刚性壁的动态压溃模型[J].爆炸与冲击, 2013, 33(6):587-593. DOI: 10.3969/j.issn.1001-1455.2013.06.005.

    WANG Changfeng, ZHENG Zhijun, YU Jilin. Dynamic crushing models for a foam rod striking a rigid wall[J]. Explosion and Shock Waves, 2013, 33(6):587-593. DOI: 10.3969/j.issn.1001-1455.2013.06.005.
    [13] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model[J]. Journal of the Mechanics and Physics of Solids, 2014, 72:93-114. DOI: 10.1016/j.jmps.2014.07.013.
    [14] BARNES A T, RAVI-CHANDA K, KYRIAKIDES S, et al. Dynamic crushing of aluminum foams:Part Ⅰ:Experiments[J]. International Journal of Solids and Structures, 2014, 51(9):1631-1645. DOI: 10.1016/j.ijsolstr.2013.11.019.
    [15] SUN Y L, LI Q M, MCDONALD S A, et al. Determination of the constitutive relation and critical condition for the shock compression of cellular solids[J]. Mechanics of Materials, 2016, 99:26-36. DOI: 10.1016/j.mechmat.2016.04.004.
    [16] WANG P, WANG X K, ZHENG Z J, et al. Stress distribution in graded cellular materials under dynamic compression[J]. Latin American Journal of Solids and Structures, 2017, 14(7):1251-1272. DOI: 10.1016/j.ijimpeng.2017.10.006.
    [17] WANG L L. Foundations of stress waves[M]. Amsterdam:Elsevier Science Ltd., 2007. DOI: 10.1002/prep.200790014.
  • 加载中
图(10)
计量
  • 文章访问数:  5663
  • HTML全文浏览量:  1506
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-09
  • 修回日期:  2018-03-06
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回