[1] |
REID S R, BELL W W, BARR R A. Structural plastic shock model for one-dimensional ring systems[J]. International Journal of Impact Engineering, 1983, 1(2):175-191.DOI: 10.1016/0734-743X(83)90005-2.
|
[2] |
REID S R, PENG C. Dynamic uniaxial crushing of wood[J]. International Journal of Impact Engineering, 1997, 19(5/6):531-570. DOI: 10.1016/S0734-743X(97)00016-X.
|
[3] |
ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures:A finite element study[J]. International Journal of Impact Engineering, 2005, 32(1):650-664. DOI: 10.1016/j.ijimpeng.2005.05.007.
|
[4] |
LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals[J]. International Journal of Solids and Structures, 2009, 46(22):3988-3998. DOI: 10.1016/j.ijsolstr.2009.07.024.
|
[5] |
张新春, 刘颖, 章梓茂.组合蜂窝材料面内冲击性能的研究[J].工程力学, 2009, 26(6):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900938825ZHANG Xinchun, LIU Ying, ZHANG Zimao. Research on dynamic properties of suppercell honeycomb structures under in-plane impact loading[J]. Engineering Mechanics, 2009, 26(6):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200900938825
|
[6] |
胡玲玲, 蒋玲.胞孔构型对金属蜂窝动态力学性能的影响机理[J].爆炸与冲击, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.HU Lingling, JIANG Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.
|
[7] |
ZOU Z, REID S R, TAN P J, et al. Dynamic crushing of honeycombs and features of shock fronts[J]. International Journal of Impact Engineering, 2009, 36(1):165-176. DOI: 10.1016/j.ijimpeng.2007.11.008.
|
[8] |
LIAO S F, ZHENG Z J, YU J L. Dynamic crushing of 2D cellular structures:Local strain field and shock wave velocity[J]. International Journal of Impact Engineering, 2013, 57(1):7-16. DOI: 10.1016/j.ijimpeng.2013.01.008.
|
[9] |
TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅱ:"Shock"theory and comparison with experimental data and numerical models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2206-2230. DOI: 10.1016/j.jmps.2005.05.003.
|
[10] |
TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams. Part Ⅰ:Experimental data and observations[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10):2174-2205. DOI: 10.1016/j.jmps.2005.05.007.
|
[11] |
ZHENG Z J, YU J L, WANG C F, et al. Dynamic crushing of cellular materials:A unified framework of plastic shock wave models[J]. International Journal of Impact Engineering, 2013, 53(1):29-43. DOI: 10.1016/j.ijimpeng.2012.06.012.
|
[12] |
王长峰, 郑志军, 虞吉林.泡沫杆撞击刚性壁的动态压溃模型[J].爆炸与冲击, 2013, 33(6):587-593. DOI: 10.3969/j.issn.1001-1455.2013.06.005.WANG Changfeng, ZHENG Zhijun, YU Jilin. Dynamic crushing models for a foam rod striking a rigid wall[J]. Explosion and Shock Waves, 2013, 33(6):587-593. DOI: 10.3969/j.issn.1001-1455.2013.06.005.
|
[13] |
ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model[J]. Journal of the Mechanics and Physics of Solids, 2014, 72:93-114. DOI: 10.1016/j.jmps.2014.07.013.
|
[14] |
BARNES A T, RAVI-CHANDA K, KYRIAKIDES S, et al. Dynamic crushing of aluminum foams:Part Ⅰ:Experiments[J]. International Journal of Solids and Structures, 2014, 51(9):1631-1645. DOI: 10.1016/j.ijsolstr.2013.11.019.
|
[15] |
SUN Y L, LI Q M, MCDONALD S A, et al. Determination of the constitutive relation and critical condition for the shock compression of cellular solids[J]. Mechanics of Materials, 2016, 99:26-36. DOI: 10.1016/j.mechmat.2016.04.004.
|
[16] |
WANG P, WANG X K, ZHENG Z J, et al. Stress distribution in graded cellular materials under dynamic compression[J]. Latin American Journal of Solids and Structures, 2017, 14(7):1251-1272. DOI: 10.1016/j.ijimpeng.2017.10.006.
|
[17] |
WANG L L. Foundations of stress waves[M]. Amsterdam:Elsevier Science Ltd., 2007. DOI: 10.1002/prep.200790014.
|