• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

负泊松比蜂窝材料的动力学响应及能量吸收特性

韩会龙 张新春 王鹏

王宝珍, 胡时胜. 猪后腿肌肉的冲击压缩特性实验[J]. 爆炸与冲击, 2010, 30(1): 33-38. doi: 10.11883/1001-1455(2010)01-0033-06
引用本文: 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281
WANG Bao-zhen, HU Shi-sheng. Dynamiccompressionexperimentsofporcineham muscle[J]. Explosion And Shock Waves, 2010, 30(1): 33-38. doi: 10.11883/1001-1455(2010)01-0033-06
Citation: HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio[J]. Explosion And Shock Waves, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281

负泊松比蜂窝材料的动力学响应及能量吸收特性

doi: 10.11883/bzycj-2017-0281
基金项目: 

国家自然科学基金 11402089

河北省自然科学基金 A2017502015

中央高校基本科研业务费专项资金 2016MS114

中央高校基本科研业务费专项资金 2017MS153

详细信息
    作者简介:

    韩会龙(1988-), 男, 硕士, 工程师

    通讯作者:

    张新春, xczhang@ncepu.edu.cn

  • 中图分类号: O347;TB39

Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio

  • 摘要: 针对传统正方形蜂窝,通过用更小的双向内凹结构胞元替代原蜂窝材料的结构节点,得到了一种具有负泊松比特性的节点层级蜂窝材料模型。利用显式动力有限元方法,研究了冲击荷载作用下该负泊松比蜂窝结构的动力学响应及能量吸收特性。研究结果表明,除了冲击速度和相对密度,负泊松比蜂窝材料的动力学性能亦取决于胞元微结构。与正方形蜂窝相比,该负泊松比层级蜂窝材料的动态承载能力和能量吸收能力明显增强。在中低速冲击下,试件表现为拉胀材料明显的"颈缩"现象,并展示出负泊松比材料独特的平台应力增强效应。基于能量吸收效率方法和一维冲击波理论,给出了负泊松比蜂窝材料的密实应变和动态平台应力的经验公式,以预测该蜂窝材料的动态承载能力。本文的研究将为负泊松比多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。
  • 图  1  负泊松比蜂窝结构的构造过程及其代表性体积单元

    Figure  1.  The constructive process and representative volume element of honeycombs with negative Poisson's ratio (NPR)

    图  2  蜂窝材料的计算模型示意图

    Figure  2.  Illustration of calculating model for honeycombs

    图  3  面内冲击载荷作用下蜂窝材料的名义应力应变曲线

    Figure  3.  Nominal stress-strain curves of honeycombs under in-plane crushing

    图  4  蜂窝的宏微观变形模式

    Figure  4.  Macroscopic and microscopic deformation modes of honeycombs

    图  5  不同冲击速度下负泊松比蜂窝材料的宏观变形模式

    Figure  5.  Macroscopic deformation modes of honeycombs with NPR at different impact velocities

    图  6  不同冲击速度下正方形蜂窝材料的宏观变形模式

    Figure  6.  Macroscopic deformation modes of square honeycombs at different impact velocities

    图  7  负泊松比蜂窝名义应力应变曲线与能量吸收效率曲线

    Figure  7.  Nominal stress-strain curve and corresponding energy absorption efficiency curve of honeycomb with NPR

    图  8  负泊松比蜂窝结构的密实应变与冲击速度间的关系

    Figure  8.  Variation of desification strain with impact velocity for honeycombs with NPR

    图  9  负泊松比蜂窝结构的平台应力增强应变和密实应变关系曲线

    Figure  9.  Variation of plateau stress enhancement strain with densification strain for honeycombs with NPR

    图  10  不同冲击速度下负泊松比蜂窝和正方形蜂窝的平台应力

    Figure  10.  Plateau stresses of honeycombs with NPR and square honeycombs at different impact velocities

    图  11  不同微结构负泊松比蜂窝材料的平台应力与冲击速度间的关系

    Figure  11.  Variation of plateau stresses for honeycombs with NPR at different cellmicro-structures with respect to impact velocities

    图  12  负泊松比蜂窝的名义应力应变关系

    Figure  12.  Relation between nominal stress and nominal strain of honeycombs with NPR

    图  13  负泊松比蜂窝的能量吸收与名义应变关系

    Figure  13.  Relation between energy absorption and nominal strain of honeycombs with NPR

    图  14  负泊松比蜂窝的内能分布系数与名义应变关系

    Figure  14.  Relation between internal energy distribution coefficient and nominal strain of honeycombs with NPR

    表  1  基体材料与刚性板材料参数

    Table  1.   Parameters of matrix material and rigid plate material

    材料 ρ/(kg·m-3) E/GPa ν σy/MPa
    2 700 69 0.3 76
    刚性板 7 800 210
    下载: 导出CSV

    表  2  负泊松比蜂窝结构的密实应变

    Table  2.   Densification strains of honeycombs with NPR

    v/(m·s-1) εD
    Δρ=0.13 Δρ=0.15 Δρ=0.19 Δρ=0.24 Δρ=0.32
    3 0.666 1 0.642 0 0.617 5 0.550 7 0.515 1
    20 0.739 0 0.714 7 0.689 1 0.649 5 0.558 4
    70 0.786 7 0.759 7 0.729 6 0.683 9 0.583 8
    120 0.808 0 0.780 4 0.744 5 0.702 5 0.645 4
    200 0.814 9 0.793 0 0.755 6 0.719 3 0.651 3
    下载: 导出CSV
  • [1] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58(6):140-153. DOI: 10.1016/j.commatsci.2012.02.012.
    [2] 余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011:197-220.
    [3] GIBSON L J, ASHBY M F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press, 1997:1-13.
    [4] PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3):305-314. DOI: 10.1016/S0020-7403(96)00025-2.
    [5] 张新春, 祝晓燕, 李娜.六韧带手性蜂窝结构的动力学响应特性研究[J].振动与冲击, 2016, 35(8):1-7. DOI: 10.13465/j.cnki.jvs.2016.08.001.

    ZHANG Xinchun, ZHU Xiaoyan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8):1-7. DOI: 10.13465/j.cnki.jvs.2016.08.001.
    [6] SCARPA F, SMITH C W, RUZZENE M, et al. Mechanical properties of auxetic tubular truss-like structures[J]. Physica Status Solid, 2008, 245(3):584-590. DOI: 10.1002/pssb.200777715.
    [7] 张伟, 侯文彬, 胡平.新型负泊松比多孔吸能盒平台区力学性能[J].复合材料学报, 2015, 32(2):534-541. DOI: 10.13801/j.cnki.fhclxb.20140616.003.

    ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Poisson's ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(2):534-541. DOI: 10.13801/j.cnki.fhclxb.20140616.003.
    [8] QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Journal of Impact Engineering, 2015, 83(9):47-58. DOI: 10.1016/j.ijimpeng.2015.04.005.
    [9] ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1):26-55. DOI: 10.1177/1099636214554180.
    [10] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs:A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182. DOI: 10.1016/S0734-743X(02)00056-8.
    [11] LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36(1):98-109. DOI: 10.1016/j.ijimpeng.2008.03.001.
    [12] QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, Part Ⅱ:Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10):1231-1241. DOI: 10.1016/j.ijimpeng.2009.05.010.
    [13] ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient[J]. Journal of Sandwich Structures and Materials, 2014, 16(2):125-147. DOI: 10.1177/1099636213509099.
    [14] SUN D, ZHANG W, ZHAO Y, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96(2):726-735. DOI: 10.1016/j.compstruct.2012.10.008.
    [15] ZHOU G, MA Z D, GU J, et al. Design optimization of a NPR structure based on HAM optimization method[J]. Structural and Multidisciplinary Optimization, 2016, 53(3):635-643. DOI: 10.1007/s00158-015-1341-x.
    [16] 胡玲玲, 蒋玲.胞孔构型对金属蜂窝动态力学性能的影响机理[J].爆炸与冲击, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.

    HU Lingling, JIANG Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.
  • 期刊类型引用(34)

    1. 吴鹏,陈利,王静. 多向嵌入式圆形蜂窝面外动态冲击响应. 聊城大学学报(自然科学版). 2025(02): 224-231 . 百度学术
    2. 张宝庆,蒋森. 旋转型负泊松比星形蜂窝结构能量吸收特性研究. 固体力学学报. 2025(01): 129-148 . 百度学术
    3. 陈碧敏,黄小娣. 梯度蜂窝力学行为及其多目标优化设计. 机械强度. 2024(01): 107-114 . 百度学术
    4. 陈思远,陈涛,王禹,杨金水,李爽. 三维增强型双箭头负泊松比结构抗冲击性能研究. 舰船科学技术. 2024(06): 31-37 . 百度学术
    5. 李锐,李成兵,李仁富,胡丽萍,张吉涛,叶强. 内嵌负泊松比型耦合蜂窝结构的共面冲击响应. 塑性工程学报. 2024(05): 224-232 . 百度学术
    6. 石南南,张伟晨,李振宝,王利辉,刘晗,张雷,夏阳. 泡沫填充四韧带反手性结构和内凹结构的面内压缩性能. 复合材料学报. 2024(06): 2935-2946 . 百度学术
    7. 李娜,刘述尊,张新春,张英杰,齐文睿. 新型星-菱形负泊松比蜂窝结构的动态力学特性. 复合材料学报. 2024(09): 4956-4967 . 百度学术
    8. 朱春晓,徐双喜,陈威,李晓彬,乐京霞. 负泊松比曲边内凹同心蜂窝结构冲击吸能特性研究. 武汉理工大学学报(交通科学与工程版). 2023(01): 90-95 . 百度学术
    9. 亓昌,丁晨,刘海涛,江峰,陈上,杨姝. 弧形双箭头蜂窝面内压缩性能试验与仿真. 华南理工大学学报(自然科学版). 2023(01): 61-68 . 百度学术
    10. 王义平,李凤莲,吕梅. 波纹-负泊松比蜂窝混合芯夹层板的自由振动. 科学技术与工程. 2023(14): 5963-5969 . 百度学术
    11. 程乾,尹剑飞,温激鸿,郁殿龙. 极小曲面力学超材料抗冲吸能特性分析. 动力学与控制学报. 2023(07): 43-50 . 百度学术
    12. 李成兵,张吉涛,叶强,李锐,李仁富,杨兰英. 复合蜂窝结构的冲击响应特性. 塑性工程学报. 2023(09): 195-203 . 百度学术
    13. 罗伟洪,何婉青,吴文军,李世强,王志勇. 不同速度下负泊松比弧形结构的变形行为. 爆炸与冲击. 2023(11): 75-87 . 本站查看
    14. 张翼,余胜,刘加一,何红萱,张涛. 负泊松比内凹蜂窝圆柱壳水下抗冲击响应研究. 舰船科学技术. 2023(21): 1-7 . 百度学术
    15. 赵颖,王凯锋,施劲余,桑叶,李云伍,陈宇,殷举伞. 微元胞缺失下三星型微结构面内动态性能分析. 振动与冲击. 2022(10): 115-123+185 . 百度学术
    16. 何斌策,张君华,孙莹. 曲壁蜂窝夹层板的振动特性研究. 固体力学学报. 2022(03): 296-306 . 百度学术
    17. 刘崎崎,胡俊. 星型倾斜壁节点蜂窝结构的动态力学特性. 湖北理工学院学报. 2022(04): 44-49 . 百度学术
    18. 卫禹辰,黄春阳,袁梦琦. 高应变率下三种典型蜂窝结构力学特性及参数优化研究. 中国科学基金. 2022(03): 530-535 . 百度学术
    19. 刘彦佐,李振羽,杨金水. 碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能. 复合材料学报. 2022(08): 4117-4128 . 百度学术
    20. 刘海涛,刘佳岳,张德权. 空竹型负泊松比蜂窝结构的面内冲击性能研究. 振动与冲击. 2022(17): 262-267 . 百度学术
    21. 胡锦顺,林永水,陈威,李晓彬,吴卫国. 改进星形蜂窝结构面内动力学响应及能量吸收特性研究. 振动与冲击. 2022(23): 119-128 . 百度学术
    22. 陈旺龙,胡俊. 冲击荷载下类蜂窝结构的动态压缩特性研究. 湖北理工学院学报. 2021(02): 48-52 . 百度学术
    23. 赵著杰,侯海量,李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展. 中国舰船研究. 2021(03): 96-111 . 百度学术
    24. 白临奇,史小全,刘宏瑞,孙雅洲. 冲击载荷下箭头型负泊松比蜂窝结构动态吸能性能研究. 振动与冲击. 2021(11): 70-77 . 百度学术
    25. 朱建生,武天宇. 火炮发射载荷下负泊松比蜂窝结构抗冲击性能研究. 兵器装备工程学报. 2021(10): 97-102 . 百度学术
    26. 闫昭臣,张君华,刘彦琦. 不同泊松比蜂窝夹层板的振动实验分析. 应用力学学报. 2021(06): 2256-2261 . 百度学术
    27. 刘海涛,安明冉,王梁,乔国朝,任富光. 双向角度梯度内凹蜂窝结构的面内倾斜冲击性能研究. 振动与冲击. 2021(23): 159-165 . 百度学术
    28. 李志强,靳朝晖,张素风,孙涛. 正棱台缓冲垫结构参数对静态缓冲性能的影响. 包装工程. 2020(07): 141-146 . 百度学术
    29. 杨欣,范晓文,许述财,黄晗,霍鹏. 仿虾螯结构薄壁管设计及耐撞性分析. 爆炸与冲击. 2020(04): 62-72 . 本站查看
    30. 张新春,沈振峰,吴鹤翔,白江畔,曹应平. 多段填充复合蜂窝结构的动态响应特性研究. 湖南大学学报(自然科学版). 2020(04): 67-75 . 百度学术
    31. 房泽臣,冯杰,陈川琳,李忠新,吴志林. 蛛丝β-片状纳米晶体启发的蜂窝结构动态力学特性研究. 振动与冲击. 2020(16): 46-54 . 百度学术
    32. 沈振峰,张新春,白江畔,吴鹤翔. 负泊松比内凹环形蜂窝结构的冲击响应特性研究. 振动与冲击. 2020(18): 89-95+117 . 百度学术
    33. 孙晓旺,陶晓晓,王显会,李进军,王利辉. 负泊松比蜂窝材料抗爆炸特性及优化设计研究. 爆炸与冲击. 2020(09): 66-76 . 本站查看
    34. 宋晓辉,李梦瑶,周晓杰,刘阳,段玉莹,马衍轩. 钢筋混凝土的负泊松比设计及其常规力学性能研究. 青岛理工大学学报. 2020(05): 1-8 . 百度学术

    其他类型引用(45)

  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  7577
  • HTML全文浏览量:  2283
  • PDF下载量:  150
  • 被引次数: 79
出版历程
  • 收稿日期:  2017-08-06
  • 修回日期:  2018-01-16
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回