负泊松比蜂窝材料的动力学响应及能量吸收特性

韩会龙 张新春 王鹏

韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281
引用本文: 韩会龙, 张新春, 王鹏. 负泊松比蜂窝材料的动力学响应及能量吸收特性[J]. 爆炸与冲击, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281
HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio[J]. Explosion And Shock Waves, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281
Citation: HAN Huilong, ZHANG Xinchun, WANG Peng. Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio[J]. Explosion And Shock Waves, 2019, 39(1): 013103. doi: 10.11883/bzycj-2017-0281

负泊松比蜂窝材料的动力学响应及能量吸收特性

doi: 10.11883/bzycj-2017-0281
基金项目: 

国家自然科学基金 11402089

河北省自然科学基金 A2017502015

中央高校基本科研业务费专项资金 2016MS114

中央高校基本科研业务费专项资金 2017MS153

详细信息
    作者简介:

    韩会龙(1988-), 男, 硕士, 工程师

    通讯作者:

    张新春, xczhang@ncepu.edu.cn

  • 中图分类号: O347;TB39

Dynamic responses and energy absorption properties of honeycombs with negative Poisson's ratio

  • 摘要: 针对传统正方形蜂窝,通过用更小的双向内凹结构胞元替代原蜂窝材料的结构节点,得到了一种具有负泊松比特性的节点层级蜂窝材料模型。利用显式动力有限元方法,研究了冲击荷载作用下该负泊松比蜂窝结构的动力学响应及能量吸收特性。研究结果表明,除了冲击速度和相对密度,负泊松比蜂窝材料的动力学性能亦取决于胞元微结构。与正方形蜂窝相比,该负泊松比层级蜂窝材料的动态承载能力和能量吸收能力明显增强。在中低速冲击下,试件表现为拉胀材料明显的"颈缩"现象,并展示出负泊松比材料独特的平台应力增强效应。基于能量吸收效率方法和一维冲击波理论,给出了负泊松比蜂窝材料的密实应变和动态平台应力的经验公式,以预测该蜂窝材料的动态承载能力。本文的研究将为负泊松比多胞材料冲击动力学性能的多目标优化设计提供新的设计思路。
  • 图  1  负泊松比蜂窝结构的构造过程及其代表性体积单元

    Figure  1.  The constructive process and representative volume element of honeycombs with negative Poisson's ratio (NPR)

    图  2  蜂窝材料的计算模型示意图

    Figure  2.  Illustration of calculating model for honeycombs

    图  3  面内冲击载荷作用下蜂窝材料的名义应力应变曲线

    Figure  3.  Nominal stress-strain curves of honeycombs under in-plane crushing

    图  4  蜂窝的宏微观变形模式

    Figure  4.  Macroscopic and microscopic deformation modes of honeycombs

    图  5  不同冲击速度下负泊松比蜂窝材料的宏观变形模式

    Figure  5.  Macroscopic deformation modes of honeycombs with NPR at different impact velocities

    图  6  不同冲击速度下正方形蜂窝材料的宏观变形模式

    Figure  6.  Macroscopic deformation modes of square honeycombs at different impact velocities

    图  7  负泊松比蜂窝名义应力应变曲线与能量吸收效率曲线

    Figure  7.  Nominal stress-strain curve and corresponding energy absorption efficiency curve of honeycomb with NPR

    图  8  负泊松比蜂窝结构的密实应变与冲击速度间的关系

    Figure  8.  Variation of desification strain with impact velocity for honeycombs with NPR

    图  9  负泊松比蜂窝结构的平台应力增强应变和密实应变关系曲线

    Figure  9.  Variation of plateau stress enhancement strain with densification strain for honeycombs with NPR

    图  10  不同冲击速度下负泊松比蜂窝和正方形蜂窝的平台应力

    Figure  10.  Plateau stresses of honeycombs with NPR and square honeycombs at different impact velocities

    图  11  不同微结构负泊松比蜂窝材料的平台应力与冲击速度间的关系

    Figure  11.  Variation of plateau stresses for honeycombs with NPR at different cellmicro-structures with respect to impact velocities

    图  12  负泊松比蜂窝的名义应力应变关系

    Figure  12.  Relation between nominal stress and nominal strain of honeycombs with NPR

    图  13  负泊松比蜂窝的能量吸收与名义应变关系

    Figure  13.  Relation between energy absorption and nominal strain of honeycombs with NPR

    图  14  负泊松比蜂窝的内能分布系数与名义应变关系

    Figure  14.  Relation between internal energy distribution coefficient and nominal strain of honeycombs with NPR

    表  1  基体材料与刚性板材料参数

    Table  1.   Parameters of matrix material and rigid plate material

    材料 ρ/(kg·m-3) E/GPa ν σy/MPa
    2 700 69 0.3 76
    刚性板 7 800 210
    下载: 导出CSV

    表  2  负泊松比蜂窝结构的密实应变

    Table  2.   Densification strains of honeycombs with NPR

    v/(m·s-1) εD
    Δρ=0.13 Δρ=0.15 Δρ=0.19 Δρ=0.24 Δρ=0.32
    3 0.666 1 0.642 0 0.617 5 0.550 7 0.515 1
    20 0.739 0 0.714 7 0.689 1 0.649 5 0.558 4
    70 0.786 7 0.759 7 0.729 6 0.683 9 0.583 8
    120 0.808 0 0.780 4 0.744 5 0.702 5 0.645 4
    200 0.814 9 0.793 0 0.755 6 0.719 3 0.651 3
    下载: 导出CSV
  • [1] PRAWOTO Y. Seeing auxetic materials from the mechanics point of view:A structural review on the negative Poisson's ratio[J]. Computational Materials Science, 2012, 58(6):140-153. DOI: 10.1016/j.commatsci.2012.02.012.
    [2] 余同希, 邱信明.冲击动力学[M].北京:清华大学出版社, 2011:197-220.
    [3] GIBSON L J, ASHBY M F. Cellular solids:Structure and properties[M]. Cambridge:Cambridge University Press, 1997:1-13.
    [4] PRALL D, LAKES R S. Properties of a chiral honeycomb with a Poisson's ratio of -1[J]. International Journal of Mechanical Sciences, 1997, 39(3):305-314. DOI: 10.1016/S0020-7403(96)00025-2.
    [5] 张新春, 祝晓燕, 李娜.六韧带手性蜂窝结构的动力学响应特性研究[J].振动与冲击, 2016, 35(8):1-7. DOI: 10.13465/j.cnki.jvs.2016.08.001.

    ZHANG Xinchun, ZHU Xiaoyan, LI Na. A study of the dynamic response characteristics of hexagonal chiral honeycombs[J]. Journal of Vibration and Shock, 2016, 35(8):1-7. DOI: 10.13465/j.cnki.jvs.2016.08.001.
    [6] SCARPA F, SMITH C W, RUZZENE M, et al. Mechanical properties of auxetic tubular truss-like structures[J]. Physica Status Solid, 2008, 245(3):584-590. DOI: 10.1002/pssb.200777715.
    [7] 张伟, 侯文彬, 胡平.新型负泊松比多孔吸能盒平台区力学性能[J].复合材料学报, 2015, 32(2):534-541. DOI: 10.13801/j.cnki.fhclxb.20140616.003.

    ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Poisson's ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(2):534-541. DOI: 10.13801/j.cnki.fhclxb.20140616.003.
    [8] QIAO J X, CHEN C Q. Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[J]. International Journal of Impact Engineering, 2015, 83(9):47-58. DOI: 10.1016/j.ijimpeng.2015.04.005.
    [9] ZHANG X C, AN L Q, DING H M, et al. The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio[J]. Journal of Sandwich Structures and Materials, 2015, 17(1):26-55. DOI: 10.1177/1099636214554180.
    [10] RUAN D, LU G, WANG B, et al. In-plane dynamic crushing of honeycombs:A finite element study[J]. International Journal of Impact Engineering, 2003, 28(2):161-182. DOI: 10.1016/S0734-743X(02)00056-8.
    [11] LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J]. International Journal of Impact Engineering, 2009, 36(1):98-109. DOI: 10.1016/j.ijimpeng.2008.03.001.
    [12] QIU X M, ZHANG J, YU T X. Collapse of periodic planar lattices under uniaxial compression, Part Ⅱ:Dynamic crushing based on finite element simulation[J]. International Journal of Impact Engineering, 2009, 36(10):1231-1241. DOI: 10.1016/j.ijimpeng.2009.05.010.
    [13] ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient[J]. Journal of Sandwich Structures and Materials, 2014, 16(2):125-147. DOI: 10.1177/1099636213509099.
    [14] SUN D, ZHANG W, ZHAO Y, et al. In-plane crushing and energy absorption performance of multi-layer regularly arranged circular honeycombs[J]. Composite Structures, 2013, 96(2):726-735. DOI: 10.1016/j.compstruct.2012.10.008.
    [15] ZHOU G, MA Z D, GU J, et al. Design optimization of a NPR structure based on HAM optimization method[J]. Structural and Multidisciplinary Optimization, 2016, 53(3):635-643. DOI: 10.1007/s00158-015-1341-x.
    [16] 胡玲玲, 蒋玲.胞孔构型对金属蜂窝动态力学性能的影响机理[J].爆炸与冲击, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.

    HU Lingling, JIANG Ling. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs[J]. Explosion and Shock Waves, 2014, 34(1):41-46. DOI: 10.3969/j.issn.1001-1455.2014.01.008.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  7510
  • HTML全文浏览量:  2238
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-06
  • 修回日期:  2018-01-16
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回