增强型喷射器对爆轰波DDT过程的影响

饶飞雄 雷知迪 丁珏 翁培奋

饶飞雄, 雷知迪, 丁珏, 翁培奋. 增强型喷射器对爆轰波DDT过程的影响[J]. 爆炸与冲击, 2019, 39(2): 022101. doi: 10.11883/bzycj-2017-0284
引用本文: 饶飞雄, 雷知迪, 丁珏, 翁培奋. 增强型喷射器对爆轰波DDT过程的影响[J]. 爆炸与冲击, 2019, 39(2): 022101. doi: 10.11883/bzycj-2017-0284
RAO Feixiong, LEI Zhidi, DING Jue, WENG Peifen. Influence of an enhanced injector on DDT process[J]. Explosion And Shock Waves, 2019, 39(2): 022101. doi: 10.11883/bzycj-2017-0284
Citation: RAO Feixiong, LEI Zhidi, DING Jue, WENG Peifen. Influence of an enhanced injector on DDT process[J]. Explosion And Shock Waves, 2019, 39(2): 022101. doi: 10.11883/bzycj-2017-0284

增强型喷射器对爆轰波DDT过程的影响

doi: 10.11883/bzycj-2017-0284
基金项目: 

国家自然科学基金 11472167

详细信息
    作者简介:

    饶飞雄(1989-), 男, 硕士研究生, 1052115992@qq.com

    通讯作者:

    丁珏(1973-), 女, 博士, 副研究员, dingjue_lu@shu.edu.cn

  • 中图分类号: O381

Influence of an enhanced injector on DDT process

  • 摘要: 在激波、火焰及射流同时存在的流场中,组织燃烧转爆轰过程是脉冲爆震发动机实现点火、起爆的关键问题。设计一类喷射器,采用C2H2/O2/Ar反应,数值验证了该喷射器能增强爆震室燃料燃烧转爆轰的可行性,并讨论了流场中热点的点火机制。结果显示:该装置在流场中可激发不稳定性,产生漩涡,加速能量、质量的交换。流场产生热点,促进火焰速度加快,追赶前导激波。喷射器位置影响前导激波的运动速度。在一定范围内,前导激波速度越大,碰撞产生的热点越容易激发燃烧转爆轰过程。
  • 图  1  爆轰波结构

    Figure  1.  Single detonation cell pattern

    图  2  计算区域和喷射器示意图

    Figure  2.  Sketch of computation field and injector

    图  3  喷射器影响下燃烧转爆轰的DDT过程

    Figure  3.  DDT process affected by the injector

    图  4  流场参数的分布

    Figure  4.  Distribution of flow parameters

    图  5  沿x正方向的火焰速度

    Figure  5.  Flame propagation velocity along x positive direction

    图  6  前导激波速度与喷射器位置关系

    Figure  6.  Relation between leading shock velocity and injector position

    图  7  通过喷射器流场的火焰分布

    Figure  7.  Distribution of the flame through the injector

    图  8  喷射器不同表面阻断率下热点位置附近流场的参数

    Figure  8.  Flow parameters near the hot spots formed at different blocking rates

    图  9  反应阵面的热释放率时程曲线

    Figure  9.  Histories of release heat rate at the reaction front

    表  1  验证算例中爆轰参数

    Table  1.   Detonation parameters in verification example

    爆速/(m·s-1) 温度/K 压力/MPa
    实验 C-J理论 计算 实验 C-J理论 计算 实验 C-J理论 计算
    2 825 2 853 2 819.36 3 583 - 3 682.75 1.86 1.86 1.91
    下载: 导出CSV

    表  2  有/无喷射器时爆轰波状态对比

    Table  2.   Comparison of detonation wave state with or without injector

    状态 时间/μs 前导激波位置/cm 是否形成稳定爆轰波
    无喷射器 350 28.22
    带喷射器 218 28.23
    下载: 导出CSV

    表  3  喷射器位置对爆轰波的影响

    Table  3.   Influence of injector positions on detonation

    喷射器位置/cm 爆轰波波面位置/cm 是否形成稳定爆轰波
    3.8 -
    3.9 35.72
    4.0 35.74
    5.0 34.63
    7.0 32.65
    9.0 29.84
    11.0 26.02
    下载: 导出CSV

    表  4  喷射器表面阻断率对爆轰波形成和发展的影响

    Table  4.   Influence of the blocking rate of injector on detonation

    表面阻断率 时间/μs 爆轰波波面位置/cm 是否形成稳定爆轰波
    0.400 228 -
    0.444 228 32.45
    0.462 228 32.52
    0.471 228 32.65
    下载: 导出CSV
  • [1] 张群, 范玮, 徐华胜.中国脉冲爆震发动机技术研究现状及分析[J].航空发动机, 2013, 39(3):18-22. DOI: 10.3969/j.issn.1672-3147.2013.03.004.

    ZHANG Qun, FAN Wei, XU Huasheng. A review on research status of pulse detonation engine in China[J]. Aeroengine, 2013, 39(3):18-22. DOI: 10.3969/j.issn.1672-3147.2013.03.004.
    [2] ZHANG B, NG H D, MÉVEL R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(9):5707-5716. DOI: 10.1016/j.ijhydene.2011.01.175.
    [3] 张博, 白春华.C2H2-O2-Ar和C2H2-N2O-Ar直接起爆形成爆轰的临界能量[J].爆炸与冲击, 2012, 32(6):592-598. DOI:1001-1455(2012)06-0592-07.

    ZHANG Bo, BAI Chunhua. Critical energy for direct initiation of spherical detonations in C2H2-O2-Ar and C2H2-N2O-Ar mixtures[J]. Explosion and Shock Waves, 2012, 32(6):592-598. DOI:1001-1455(2012)06-0592-07.
    [4] VALIEV D, BYCHKOV V, AKKERMAN V, et al. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition[J]. Combustion and Flame, 2010, 157(5):1012-1021. DOI: 10.1016/j.combustflame.2009.12.021.
    [5] 张彭岗, 朱跃进, 潘振华, 等.初始压力和狭缝宽度对毫米量级狭缝内爆轰起爆距离的影响[J].爆炸与冲击, 2016, 36(4):441-448. DOI: 10.11883/1001-1455(2016)04-0441-08.

    ZHANG Penggang, ZHU Yuejin, PAN Zhenhua, et al. Effects of initial pressure and gap width on detonation initiation distance in a narrow gap with millimeter-scale width[J]. Explosion and Shock Waves, 2016, 36(4):441-448. DOI: 10.11883/1001-1455(2016)04-0441-08.
    [6] LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures[J]. Acta Astronaut, 2010, 67(7/8):688-701. DOI: 10.1016/j.actaastro.2010.05.024.
    [7] JOHANSEN C, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):571-585. DOI: 10.1016/j.jlp.2012.12.005.
    [8] GAMEZO V N, OGAWA T, ORAN E S. Flame acceleration and DDT in channels with obstacles:effect of obstacle spacing[J]. Combustion and Flame, 2008, 155(1/2):302-315. DOI: 10.1016/j.combustflame.2008.06.004.
    [9] 张宝亮, 丁珏, 王庆涛, 等.约束空间可燃气体燃烧爆轰特性的数值研究[J].中国安全生产科学技术, 2012, 8(8):23-27. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201208004

    ZHANG Baoliang, DING Jue, WANG Qingtao, et al. Numerical study on the combustion and detonation characteristics of combustible gas in constraint space[J]. Journal of Safety Science and Technology, 2012, 8(8):23-27. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201208004
    [10] 王治武, 严传俊, 范玮, 等.点火能量对脉冲爆震发动机性能的影响[J].推进技术, 2009, 30(2):224-228. DOI: 10.13675/j.cnki.tjjs.2009.02.018.

    WANG Zhiwu, YAN Chuanjun, FAN Wei, et al. Experiment on the effect of ignition energy in pulse detonation engine[J]. Journal of Propulsion Technology, 2009, 30(2):224-228. DOI: 10.13675/j.cnki.tjjs.2009.02.018.
    [11] KHOKHLOV A M, ORAN E S. Numerical simulation of detonation initiation in a flame brush:the role of hot spots[J]. Combustion and Flame, 1999, 119(4):400-416. DOI: 10.1016/S0010-2180(99)00058-9.
    [12] DEWITT B, CICCARELLI G, ZHANG F, et al. Shock reflection detonation initiation studies for pulse detonation engines[J]. Journal of Propulsion and Power, 2005, 21(6):1117-1125. DOI: 10.2514/1.14398.
    [13] 马丹花, 翁春生.爆震管内扰流片对爆震波影响的数值分析[J].推进技术, 2011, 32(3):425-430.DOI: 10.13675/j.cnki.tjjs.2011.03.023.

    MA Danhua, WENG Chunsheng. Numerical investigation of two-phase detonation with the obstacles[J]. Journal of Propulsion Technology, 2011, 32(3):425-430. DOI: 10.13675/j.cnki.tjjs.2011.03.023.
    [14] 朱雨建, 杨基明, LEE J H S.两种不同气体中的高速爆燃波及其向爆轰的转变[J].实验力学, 2008, 23(2):110-117. http://d.old.wanfangdata.com.cn/Periodical/sylx200802003

    ZHU Yujian, YANG Jiming, LEE J H S. High-speed deflagration and its transition to detonation in two different gaseous mixtures[J]. Journal of Experimental Mechanics, 2008, 23(2):110-117. http://d.old.wanfangdata.com.cn/Periodical/sylx200802003
    [15] 刘云峰, 余荣国, 王健平.脉冲爆震发动机快起爆的二维数值模拟[J].推进技术, 2004, 25(5):454-457. DOI: 10.13675/j.cnki.tjjs.2004.05.016.

    LIU Yunfeng, YU Rongguo, WANG Jianping. Two-dimensional numerical simulation for ignition of pulse detonation engine[J]. Journal of Propulsion Technology, 2004, 25(5):454-457. DOI: 10.13675/j.cnki.tjjs.2004.05.016.
    [16] FICKETT W, DAVIS W C. Detonation theory and experiment[M]. 2ed. New York:Dover Publications, 2000:1-12.
    [17] BHATTACHARJEE B, SCHWER D A, BARTON P I, et al. Optimally-reduced kinetic models:reaction elimination in large-scale kinetic mechanisms[J]. Combustion and Flame, 2003, 135(3):191-208. DOI: 10.1016/S0010-2180(03)00159-7.
    [18] NETTLETON M A. Gaseous detonations:their nature, effects and control[M]. New York:Chap Man and Hall, 1987:30-31.
    [19] YAO S, WANG J. Multiple ignitions and the stability of rotating detonation waves[J]. Applied Thermal Engineering, 2016, 108:927-936. DOI: 10.1016/j.applthermaleng.2016.07.166.
    [20] GÖTTGENS J, MAUSS F, PETERS N. Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames[J]. Symposium on Combustion, 1992, 24(1):129-135. DOI: 10.1016/S0082-0784(06)80020-2.
    [21] LEE J H S. The detonation phenomenon[M]. Cambridge:Cambridge University Press, 2008:1-16.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  6666
  • HTML全文浏览量:  2923
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-10
  • 修回日期:  2017-10-18
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回