Influence of an enhanced injector on DDT process
-
摘要: 在激波、火焰及射流同时存在的流场中,组织燃烧转爆轰过程是脉冲爆震发动机实现点火、起爆的关键问题。设计一类喷射器,采用C2H2/O2/Ar反应,数值验证了该喷射器能增强爆震室燃料燃烧转爆轰的可行性,并讨论了流场中热点的点火机制。结果显示:该装置在流场中可激发不稳定性,产生漩涡,加速能量、质量的交换。流场产生热点,促进火焰速度加快,追赶前导激波。喷射器位置影响前导激波的运动速度。在一定范围内,前导激波速度越大,碰撞产生的热点越容易激发燃烧转爆轰过程。Abstract: In the flow where the shock wave, the flame and the jet exist simultaneously, the successful process of deflagration to detonation transition (DDT) is the key to the pulse detonation engine (PDE). One kind of injector was designed, and the feasibility of enhancing deflagration to detonation transition in detonation chamber was validated by numerical simulation based on C2H2/O2/Ar reaction. The mechanism analysis of the hot spot initiating detonation was made. The device can excite instability in the flow field, generate eddies, and accelerate the exchange of energy and mass. The flow field generates hot spots, which accelerate the flame speed and catch up with the leading shock wave. The position of the ejector affects the velocity of the leading shock wave. Within a certain range, the higher the velocity of the leading shock wave is, the easier the hot spot generated by the collision will trigger the combustion-to-detonation transition process.
-
Key words:
- pulse detonation engine /
- deflagration to detonation transition /
- injector /
- hot spot /
- flame speed
-
表 1 验证算例中爆轰参数
Table 1. Detonation parameters in verification example
爆速/(m·s-1) 温度/K 压力/MPa 实验 C-J理论 计算 实验 C-J理论 计算 实验 C-J理论 计算 2 825 2 853 2 819.36 3 583 - 3 682.75 1.86 1.86 1.91 表 2 有/无喷射器时爆轰波状态对比
Table 2. Comparison of detonation wave state with or without injector
状态 时间/μs 前导激波位置/cm 是否形成稳定爆轰波 无喷射器 350 28.22 否 带喷射器 218 28.23 是 表 3 喷射器位置对爆轰波的影响
Table 3. Influence of injector positions on detonation
喷射器位置/cm 爆轰波波面位置/cm 是否形成稳定爆轰波 3.8 - 否 3.9 35.72 是 4.0 35.74 是 5.0 34.63 是 7.0 32.65 是 9.0 29.84 是 11.0 26.02 否 表 4 喷射器表面阻断率对爆轰波形成和发展的影响
Table 4. Influence of the blocking rate of injector on detonation
表面阻断率 时间/μs 爆轰波波面位置/cm 是否形成稳定爆轰波 0.400 228 - 否 0.444 228 32.45 是 0.462 228 32.52 是 0.471 228 32.65 是 -
[1] 张群, 范玮, 徐华胜.中国脉冲爆震发动机技术研究现状及分析[J].航空发动机, 2013, 39(3):18-22. DOI: 10.3969/j.issn.1672-3147.2013.03.004.ZHANG Qun, FAN Wei, XU Huasheng. A review on research status of pulse detonation engine in China[J]. Aeroengine, 2013, 39(3):18-22. DOI: 10.3969/j.issn.1672-3147.2013.03.004. [2] ZHANG B, NG H D, MÉVEL R, et al. Critical energy for direct initiation of spherical detonations in H2/N2O/Ar mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(9):5707-5716. DOI: 10.1016/j.ijhydene.2011.01.175. [3] 张博, 白春华.C2H2-O2-Ar和C2H2-N2O-Ar直接起爆形成爆轰的临界能量[J].爆炸与冲击, 2012, 32(6):592-598. DOI:1001-1455(2012)06-0592-07.ZHANG Bo, BAI Chunhua. Critical energy for direct initiation of spherical detonations in C2H2-O2-Ar and C2H2-N2O-Ar mixtures[J]. Explosion and Shock Waves, 2012, 32(6):592-598. DOI:1001-1455(2012)06-0592-07. [4] VALIEV D, BYCHKOV V, AKKERMAN V, et al. Flame acceleration in channels with obstacles in the deflagration-to-detonation transition[J]. Combustion and Flame, 2010, 157(5):1012-1021. DOI: 10.1016/j.combustflame.2009.12.021. [5] 张彭岗, 朱跃进, 潘振华, 等.初始压力和狭缝宽度对毫米量级狭缝内爆轰起爆距离的影响[J].爆炸与冲击, 2016, 36(4):441-448. DOI: 10.11883/1001-1455(2016)04-0441-08.ZHANG Penggang, ZHU Yuejin, PAN Zhenhua, et al. Effects of initial pressure and gap width on detonation initiation distance in a narrow gap with millimeter-scale width[J]. Explosion and Shock Waves, 2016, 36(4):441-448. DOI: 10.11883/1001-1455(2016)04-0441-08. [6] LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures[J]. Acta Astronaut, 2010, 67(7/8):688-701. DOI: 10.1016/j.actaastro.2010.05.024. [7] JOHANSEN C, CICCARELLI G. Modeling the initial flame acceleration in an obstructed channel using large eddy simulation[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4):571-585. DOI: 10.1016/j.jlp.2012.12.005. [8] GAMEZO V N, OGAWA T, ORAN E S. Flame acceleration and DDT in channels with obstacles:effect of obstacle spacing[J]. Combustion and Flame, 2008, 155(1/2):302-315. DOI: 10.1016/j.combustflame.2008.06.004. [9] 张宝亮, 丁珏, 王庆涛, 等.约束空间可燃气体燃烧爆轰特性的数值研究[J].中国安全生产科学技术, 2012, 8(8):23-27. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201208004ZHANG Baoliang, DING Jue, WANG Qingtao, et al. Numerical study on the combustion and detonation characteristics of combustible gas in constraint space[J]. Journal of Safety Science and Technology, 2012, 8(8):23-27. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz201208004 [10] 王治武, 严传俊, 范玮, 等.点火能量对脉冲爆震发动机性能的影响[J].推进技术, 2009, 30(2):224-228. DOI: 10.13675/j.cnki.tjjs.2009.02.018.WANG Zhiwu, YAN Chuanjun, FAN Wei, et al. Experiment on the effect of ignition energy in pulse detonation engine[J]. Journal of Propulsion Technology, 2009, 30(2):224-228. DOI: 10.13675/j.cnki.tjjs.2009.02.018. [11] KHOKHLOV A M, ORAN E S. Numerical simulation of detonation initiation in a flame brush:the role of hot spots[J]. Combustion and Flame, 1999, 119(4):400-416. DOI: 10.1016/S0010-2180(99)00058-9. [12] DEWITT B, CICCARELLI G, ZHANG F, et al. Shock reflection detonation initiation studies for pulse detonation engines[J]. Journal of Propulsion and Power, 2005, 21(6):1117-1125. DOI: 10.2514/1.14398. [13] 马丹花, 翁春生.爆震管内扰流片对爆震波影响的数值分析[J].推进技术, 2011, 32(3):425-430.DOI: 10.13675/j.cnki.tjjs.2011.03.023.MA Danhua, WENG Chunsheng. Numerical investigation of two-phase detonation with the obstacles[J]. Journal of Propulsion Technology, 2011, 32(3):425-430. DOI: 10.13675/j.cnki.tjjs.2011.03.023. [14] 朱雨建, 杨基明, LEE J H S.两种不同气体中的高速爆燃波及其向爆轰的转变[J].实验力学, 2008, 23(2):110-117. http://d.old.wanfangdata.com.cn/Periodical/sylx200802003ZHU Yujian, YANG Jiming, LEE J H S. High-speed deflagration and its transition to detonation in two different gaseous mixtures[J]. Journal of Experimental Mechanics, 2008, 23(2):110-117. http://d.old.wanfangdata.com.cn/Periodical/sylx200802003 [15] 刘云峰, 余荣国, 王健平.脉冲爆震发动机快起爆的二维数值模拟[J].推进技术, 2004, 25(5):454-457. DOI: 10.13675/j.cnki.tjjs.2004.05.016.LIU Yunfeng, YU Rongguo, WANG Jianping. Two-dimensional numerical simulation for ignition of pulse detonation engine[J]. Journal of Propulsion Technology, 2004, 25(5):454-457. DOI: 10.13675/j.cnki.tjjs.2004.05.016. [16] FICKETT W, DAVIS W C. Detonation theory and experiment[M]. 2ed. New York:Dover Publications, 2000:1-12. [17] BHATTACHARJEE B, SCHWER D A, BARTON P I, et al. Optimally-reduced kinetic models:reaction elimination in large-scale kinetic mechanisms[J]. Combustion and Flame, 2003, 135(3):191-208. DOI: 10.1016/S0010-2180(03)00159-7. [18] NETTLETON M A. Gaseous detonations:their nature, effects and control[M]. New York:Chap Man and Hall, 1987:30-31. [19] YAO S, WANG J. Multiple ignitions and the stability of rotating detonation waves[J]. Applied Thermal Engineering, 2016, 108:927-936. DOI: 10.1016/j.applthermaleng.2016.07.166. [20] GÖTTGENS J, MAUSS F, PETERS N. Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames[J]. Symposium on Combustion, 1992, 24(1):129-135. DOI: 10.1016/S0082-0784(06)80020-2. [21] LEE J H S. The detonation phenomenon[M]. Cambridge:Cambridge University Press, 2008:1-16.