前置组合杆体垂直侵彻钢靶简化模型

吴群彪 沈培辉 方海峰 范纪华 蔡李花

吴群彪, 沈培辉, 方海峰, 范纪华, 蔡李花. 前置组合杆体垂直侵彻钢靶简化模型[J]. 爆炸与冲击, 2019, 39(1): 013302. doi: 10.11883/bzycj-2017-0287
引用本文: 吴群彪, 沈培辉, 方海峰, 范纪华, 蔡李花. 前置组合杆体垂直侵彻钢靶简化模型[J]. 爆炸与冲击, 2019, 39(1): 013302. doi: 10.11883/bzycj-2017-0287
WU Qunbiao, SHEN Peihui, FANG Haifeng, FAN Jihua, CAI Lihua. Simplified model of pre-composited rod's normal penetration into steel target[J]. Explosion And Shock Waves, 2019, 39(1): 013302. doi: 10.11883/bzycj-2017-0287
Citation: WU Qunbiao, SHEN Peihui, FANG Haifeng, FAN Jihua, CAI Lihua. Simplified model of pre-composited rod's normal penetration into steel target[J]. Explosion And Shock Waves, 2019, 39(1): 013302. doi: 10.11883/bzycj-2017-0287

前置组合杆体垂直侵彻钢靶简化模型

doi: 10.11883/bzycj-2017-0287
基金项目: 

国家自然科学基金 11502098

江苏省高校自然科学研究面上项目 15KJB130003

江苏省高校自然科学研究面上项目 16KJD130001

详细信息
    作者简介:

    吴群彪(1986-), 男, 博士, 讲师, just_wqb@163.com

  • 中图分类号: O383

Simplified model of pre-composited rod's normal penetration into steel target

  • 摘要: 针对均质长杆体侵彻能力提高陷入瓶颈的问题,设计了由高密度钨合金和高硬度碳化钨组合的新型前置组合杆体。通过试验和数值模拟验证,前置组合杆体能利用材料的不同性能,在稳定侵彻阶段形成更尖锐头部形状,从而提高侵彻能力。根据试验和数值模拟结果,描述了前置组合杆体垂直侵彻钢靶的物理图像,将前置组合杆体侵彻划分为开坑段、组杆段和单杆段三部分,分别建立其各自侵彻阶段的理论模型,最终得到前置组合杆体总侵彻深度计算模型。通过与试验和数值模拟结果对比,验证了该模型的合理性。
  • 图  1  前置组合杆体示意图

    Figure  1.  Schematic of pre-composited rod

    图  2  试验布置示意图

    Figure  2.  Schematic of test layout

    图  3  试验结果

    Figure  3.  Experimental results

    图  4  前置组合杆体侵彻钢靶有限元模型

    Figure  4.  Finite element model of pre-composited rod penetrating target

    图  5  前置组合杆体侵彻钢靶有限元模型

    Figure  5.  Finite element model of pre-composited rod penetrating target

    图  6  不同配置前置组合杆体侵彻规律

    Figure  6.  Penetration laws of pre-composited rods with different configurations

    图  7  前置组合杆体的三段划分

    Figure  7.  Pre-composited rod's three divisions

    图  8  前置组合杆体运动变化图

    Figure  8.  Motion and variation of pre-composited rod

    图  9  前置组合杆体组合段杆长变化图

    Figure  9.  Variation of pre-composited rod's length

    图  10  前置组合杆体1的组杆段侵彻头形图

    Figure  10.  Nose shape of pre-composited rod 1 in penetration

    图  11  前置组合杆体的组杆段头部形状图

    Figure  11.  Nose shape of pre-composited rod

    图  12  后段单杆段侵彻时杆体头形图

    Figure  12.  Nose shape of post homogenous rod in penetration

    图  13  前置组合杆体2的组杆段侵彻头形图

    Figure  13.  Nose shape of pre-composited rod 2 in penetration

    图  14  前置组合杆体3的组杆段侵彻头形图

    Figure  14.  Nose shape of pre-composted rod 3 in penetration

    表  1  不同配置的前置组合杆体

    Table  1.   Different configurations of pre-composited rods

    杆结构 小杆体直径d2/mm 小杆体长度H1/mm
    均质杆 0 0
    前置组合杆体1 1.5 25
    前置组合杆体2 2.5 30
    前置组合杆体3 5.5 30
    下载: 导出CSV

    表  2  不同配置的前置组合杆体

    Table  2.   Different configurations of pre-composited rods

    材料 ρ/(g·cm-3) G/GPa σy/MPa γ
    93钨 17.6 136 1 506 1.54
    碳化钨 14.7 254 5 100 1.50
    45钢 7.85 77 700 2.17
    下载: 导出CSV

    表  3  两组杆体头部形状图

    Table  3.   Nose shape of two rods

    杆结构 v/(m·s-1) h/mm ε/%
    试验 数值模拟
    均质杆 1 356 84.0 81.5 2.98
    前置组合杆体1 1 310 83.0 77.7 6.39
    前置组合杆体2 1 320 84.0 80.9 3.70
    前置组合杆体3 1 200 78.0 76.2 2.31
    下载: 导出CSV

    表  4  侵彻过程中各阶段的速度变化和侵彻深度

    Table  4.   Velocity variation and penetration depth in different stages of penetration process

    杆结构 开坑段 前置组杆段 单杆段
    v0/(m·s-1) v1/(m·s-1) x1/mm v1/(m·s-1) v2/(m·s-1) x2/mm v2/(m·s-1) v3/(m·s-1) x3/mm
    均质杆 1 356 1 342.0 11.0 1 342.0 0 71.2
    前置组合杆体1 1 310 1 295.5 10.9 1 295.5 1 257.9 22.0 1 257.9 0 50.0
    前置组合杆体2 1 320 1 305.7 10.9 1 305.7 1 251.3 29.8 1 251.3 0 46.1
    前置组合杆体3 1 200 1 184.2 10.6 1 184.2 1 096.4 27.3 1 096.4 0 42.6
    下载: 导出CSV

    表  5  不同初速度下侵彻深度理论和试验对比

    Table  5.   Comparison of penetration depth between theory and test at different initial velocities

    杆结构 v0/(m·s-1) 侵彻深度 ε/%
    理论计算(x1+x2+x3)/mm 试验h/mm
    均质杆 1 356 82.2 84 2.14
    前置组合杆体1 1 310 82.9 83 0.12
    前置组合杆体2 1 320 86.8 84 3.33
    前置组合杆体3 1 200 80.5 78 3.21
    下载: 导出CSV

    表  6  不同杆结构侵彻深度数值模拟和理论对比

    Table  6.   Comparison of penetration depth between simulation and theory with different rod structures

    H1/mm 侵彻深度 ε/%
    数值模拟h/mm 理论计算(x1+x2+x3)/mm
    0 74.5 77.7 4.23
    30 78.0 83.4 6.92
    50 80.5 85.4 6.09
    70 84.0 88.5 5.36
    90 85.0 90.0 5.88
    下载: 导出CSV
  • [1] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2):275-279. DOI: 10.1115/1.3173672.
    [2] ROSENBERG Z, DEKEL E. On the role of nose profile in long-rod penetration[J]. International Journal of Impact Engineering, 1999, 22(5):551-557. DOI: 10.1016/S0734-743X(98)00054-2.
    [3] JONES S E, RULE W K. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J]. International Journal of Impact Engineering, 2000, 24(4):403-415. DOI: 10.1016/S0734-743X(99)00157-8.
    [4] JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator[J]. Computational Mechanics, 1998, 22(5):413-417. DOI: 10.1007/s004660050373.
    [5] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. DOI: 10.1016/S0734-743X(02)00005-2.
    [6] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116.DOI: 10.1016/S0734-743X(02)00037-4.
    [7] CHIAN S C, TAN B C V, SARMA A. Projectile penetration into sand:Relative density of sand and projectile nose shape and mass[J]. International Journal of Impact Engineering, 2017, 103:29-37.DOI: 10.1016/j.ijimpeng.2017.01.002.
    [8] 程兴旺, 王富耻, 李树奎, 等.不同头部形状长杆弹侵彻过程的数值模拟[J].兵工学报, 2007, 28(8):930-933. DOI: 10.3321/j.issn:1000-1093.2007.08.007.

    CHENG Xingwang, WANG Fuchi, LI Shukui, et al. Numerical simulation on the penetrations of long-rod projectiles with different nose shapes[J]. Acta Armamentarii, 2007, 28(8):930-933. DOI: 10.3321/j.issn:1000-1093.2007.08.007.
    [9] 高光发, 李永池, 黄瑞源, 等.杆弹头部形状对侵彻行为的影响及其机制[J].弹箭与制导学报, 2012, 32(6):51-54. DOI: 10.3969/j.issn.1673-9728.2012.06.015.

    GAO Guangfa, LI Yongchi, HUANG Ruiyuan, et al. Effect of nose shape on penetration performance of long-rod penetrator and its mechanism[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6):51-54. DOI: 10.3969/j.issn.1673-9728.2012.06.015.
    [10] 孙庚辰, 吴锦云, 赵国志, 等.长杆弹垂直侵彻半无限厚靶板的简化模型[J].兵工学报, 1981(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005146030

    SUN Gengchen, WU Jinyun, ZHAO Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plated with semi-infinite thickness at normal angle[J]. Acta Armamentarii, 1981(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005146030
    [11] 吴群彪, 沈培辉, 刘荣忠, 等.长杆体稳定侵彻阶段头部形状的侵彻效率分析[J].兵器材料科学与工程, 2014, 37(3):80-83.DOI: 10.3969/j.issn.1004-244X.2014.03.023.

    WU Qunbiao, SHEN Peihui, LIU Rongzhong, et al. Long rod penetration efficiency analysis of nose shape at quasi-steady penetration stage[J]. Ordnance Material Science and Engineering, 2014, 37(3):80-83. DOI: 10.3969/j.issn.1004-244X.2014.03.023.
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  4619
  • HTML全文浏览量:  1608
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-10
  • 修回日期:  2017-10-24
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回