Simplified model of pre-composited rod's normal penetration into steel target
-
摘要: 针对均质长杆体侵彻能力提高陷入瓶颈的问题,设计了由高密度钨合金和高硬度碳化钨组合的新型前置组合杆体。通过试验和数值模拟验证,前置组合杆体能利用材料的不同性能,在稳定侵彻阶段形成更尖锐头部形状,从而提高侵彻能力。根据试验和数值模拟结果,描述了前置组合杆体垂直侵彻钢靶的物理图像,将前置组合杆体侵彻划分为开坑段、组杆段和单杆段三部分,分别建立其各自侵彻阶段的理论模型,最终得到前置组合杆体总侵彻深度计算模型。通过与试验和数值模拟结果对比,验证了该模型的合理性。Abstract: In this study, to improve the penetration capability of the homogeneous long rod, a problem whose solution has hit a bottleneck, we designed a new pre-composited rod fabricated with high density tungsten alloy and high hardness tungsten carbide. It was validated through experiment and numerical simulation that our newly-designed rod can form a sharp nose shape in the steady penetration stage by cashing in on the different properties of different materials to improve the penetration capability of the long rod. Based on the experimental and simulated results, we presented a full description of the physical image of the pre-composited rod's normal penetration into a steel target, which can be divided into three sections, those of the cratering, the composited rod, and the homogeneous rod, with their theoretical models established respectively, thus obtaining the calculation model of the total pre-composited rod's penetration depth. The rationality of the model was verified by comparing it with the experiment and simulation results. The conclusions from our study are helpful for the kinetic design of weapons using the new long rod.
-
表 1 不同配置的前置组合杆体
Table 1. Different configurations of pre-composited rods
杆结构 小杆体直径d2/mm 小杆体长度H1/mm 均质杆 0 0 前置组合杆体1 1.5 25 前置组合杆体2 2.5 30 前置组合杆体3 5.5 30 表 2 不同配置的前置组合杆体
Table 2. Different configurations of pre-composited rods
材料 ρ/(g·cm-3) G/GPa σy/MPa γ 93钨 17.6 136 1 506 1.54 碳化钨 14.7 254 5 100 1.50 45钢 7.85 77 700 2.17 表 3 两组杆体头部形状图
Table 3. Nose shape of two rods
杆结构 v/(m·s-1) h/mm ε/% 试验 数值模拟 均质杆 1 356 84.0 81.5 2.98 前置组合杆体1 1 310 83.0 77.7 6.39 前置组合杆体2 1 320 84.0 80.9 3.70 前置组合杆体3 1 200 78.0 76.2 2.31 表 4 侵彻过程中各阶段的速度变化和侵彻深度
Table 4. Velocity variation and penetration depth in different stages of penetration process
杆结构 开坑段 前置组杆段 单杆段 v0/(m·s-1) v1/(m·s-1) x1/mm v1/(m·s-1) v2/(m·s-1) x2/mm v2/(m·s-1) v3/(m·s-1) x3/mm 均质杆 1 356 1 342.0 11.0 1 342.0 0 71.2 前置组合杆体1 1 310 1 295.5 10.9 1 295.5 1 257.9 22.0 1 257.9 0 50.0 前置组合杆体2 1 320 1 305.7 10.9 1 305.7 1 251.3 29.8 1 251.3 0 46.1 前置组合杆体3 1 200 1 184.2 10.6 1 184.2 1 096.4 27.3 1 096.4 0 42.6 表 5 不同初速度下侵彻深度理论和试验对比
Table 5. Comparison of penetration depth between theory and test at different initial velocities
杆结构 v0/(m·s-1) 侵彻深度 ε/% 理论计算(x1+x2+x3)/mm 试验h/mm 均质杆 1 356 82.2 84 2.14 前置组合杆体1 1 310 82.9 83 0.12 前置组合杆体2 1 320 86.8 84 3.33 前置组合杆体3 1 200 80.5 78 3.21 表 6 不同杆结构侵彻深度数值模拟和理论对比
Table 6. Comparison of penetration depth between simulation and theory with different rod structures
H1/mm 侵彻深度 ε/% 数值模拟h/mm 理论计算(x1+x2+x3)/mm 0 74.5 77.7 4.23 30 78.0 83.4 6.92 50 80.5 85.4 6.09 70 84.0 88.5 5.36 90 85.0 90.0 5.88 -
[1] FORRESTAL M J, LUK V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid[J]. Journal of Applied Mechanics, 1988, 55(2):275-279. DOI: 10.1115/1.3173672. [2] ROSENBERG Z, DEKEL E. On the role of nose profile in long-rod penetration[J]. International Journal of Impact Engineering, 1999, 22(5):551-557. DOI: 10.1016/S0734-743X(98)00054-2. [3] JONES S E, RULE W K. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J]. International Journal of Impact Engineering, 2000, 24(4):403-415. DOI: 10.1016/S0734-743X(99)00157-8. [4] JONES S E, RULE W K, JEROME D M, et al. On the optimal nose geometry for a rigid penetrator[J]. Computational Mechanics, 1998, 22(5):413-417. DOI: 10.1007/s004660050373. [5] CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics[J]. International Journal of Impact Engineering, 2002, 27(6):619-637. DOI: 10.1016/S0734-743X(02)00005-2. [6] LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J]. International Journal of Impact Engineering, 2003, 28(1):93-116.DOI: 10.1016/S0734-743X(02)00037-4. [7] CHIAN S C, TAN B C V, SARMA A. Projectile penetration into sand:Relative density of sand and projectile nose shape and mass[J]. International Journal of Impact Engineering, 2017, 103:29-37.DOI: 10.1016/j.ijimpeng.2017.01.002. [8] 程兴旺, 王富耻, 李树奎, 等.不同头部形状长杆弹侵彻过程的数值模拟[J].兵工学报, 2007, 28(8):930-933. DOI: 10.3321/j.issn:1000-1093.2007.08.007.CHENG Xingwang, WANG Fuchi, LI Shukui, et al. Numerical simulation on the penetrations of long-rod projectiles with different nose shapes[J]. Acta Armamentarii, 2007, 28(8):930-933. DOI: 10.3321/j.issn:1000-1093.2007.08.007. [9] 高光发, 李永池, 黄瑞源, 等.杆弹头部形状对侵彻行为的影响及其机制[J].弹箭与制导学报, 2012, 32(6):51-54. DOI: 10.3969/j.issn.1673-9728.2012.06.015.GAO Guangfa, LI Yongchi, HUANG Ruiyuan, et al. Effect of nose shape on penetration performance of long-rod penetrator and its mechanism[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6):51-54. DOI: 10.3969/j.issn.1673-9728.2012.06.015. [10] 孙庚辰, 吴锦云, 赵国志, 等.长杆弹垂直侵彻半无限厚靶板的简化模型[J].兵工学报, 1981(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005146030SUN Gengchen, WU Jinyun, ZHAO Guozhi, et al. A simplified model of the penetration of the long-rod penetrator against the plated with semi-infinite thickness at normal angle[J]. Acta Armamentarii, 1981(4):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005146030 [11] 吴群彪, 沈培辉, 刘荣忠, 等.长杆体稳定侵彻阶段头部形状的侵彻效率分析[J].兵器材料科学与工程, 2014, 37(3):80-83.DOI: 10.3969/j.issn.1004-244X.2014.03.023.WU Qunbiao, SHEN Peihui, LIU Rongzhong, et al. Long rod penetration efficiency analysis of nose shape at quasi-steady penetration stage[J]. Ordnance Material Science and Engineering, 2014, 37(3):80-83. DOI: 10.3969/j.issn.1004-244X.2014.03.023.