• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

冲击荷载下钢筋混凝土梁的性能及损伤评估

赵武超 钱江 张文娜

祖旭东, 黄正祥, 贾鑫. 橡胶复合靶板抗射流侵彻的理论和实验研究[J]. 爆炸与冲击, 2012, 32(4): 376-383. doi: 10.11883/1001-1455(2012)04-0376-08
引用本文: 赵武超, 钱江, 张文娜. 冲击荷载下钢筋混凝土梁的性能及损伤评估[J]. 爆炸与冲击, 2019, 39(1): 015102. doi: 10.11883/bzycj-2017-0288
ZU Xu-dong, HUANG Zheng-xiang, JIA Xin. Theoreticalandexperimentalstudyonrubbercompositearmoranti-shapedchargejetpenetration[J]. Explosion And Shock Waves, 2012, 32(4): 376-383. doi: 10.11883/1001-1455(2012)04-0376-08
Citation: ZHAO Wuchao, QIAN Jiang, ZHANG Wenna. Performance and damage evaluation of RC beams under impact loading[J]. Explosion And Shock Waves, 2019, 39(1): 015102. doi: 10.11883/bzycj-2017-0288

冲击荷载下钢筋混凝土梁的性能及损伤评估

doi: 10.11883/bzycj-2017-0288
基金项目: 

国家自然科学基金 51438010

详细信息
    作者简介:

    赵武超(1992-), 男, 博士研究生

    通讯作者:

    钱江, jqian@tongji.edu.cn

  • 中图分类号: O342

Performance and damage evaluation of RC beams under impact loading

  • 摘要: 基于落锤冲击试验,通过数值模拟研究钢筋混凝土梁在冲击荷载下的抗冲击性能和损伤机理。针对冲击荷载局部效应明显和持时短暂等特点,提出基于截面损伤因子的损伤评估方法;采用参数分析方法研究了箍筋间距、边界条件、冲头形状和面积以及冲击位置对钢筋混凝土梁的动态响应和损伤程度的影响。结果表明:基于截面的损伤评估方法能够比较直观地描述梁体损伤沿长度方向的分布;端部的固支约束可以有效地改变钢筋混凝土梁的耗能机制,并能提高梁的抗冲击承载潜力;冲击位置会直接影响梁体的裂缝分布和破坏模式;碰撞接触面积和冲头形状也对梁的损伤分布具有一定的影响。
  • 图  1  落锤冲击试验装置

    Figure  1.  Drop hammer impact test setup

    图  2  梁截面尺寸及钢筋分布(单位:mm)

    Figure  2.  Beam geometry with rebar arrangment(mm in unit)

    图  3  冲击试验有限元模型

    Figure  3.  Finite element model of impact test

    图  4  连续帽盖模型屈服面形状[9]

    Figure  4.  Shape of continuous surface cap model yield surface[9]

    图  5  不同冲击高度时RC梁的裂缝分布对比

    Figure  5.  Comparison of RC cracking patterns at different impact heights

    图  6  不同冲击高度下碰撞力和跨中挠度时程曲线对比

    Figure  6.  Comparison of impact force and midspan deflection at different impact heights

    图  7  冲击高度为1.2 m时RC梁截面损伤状态

    Figure  7.  Damage of RC beam section at drop height of 1.2 m

    图  8  不同碰撞时刻RC梁截面损伤因子

    Figure  8.  Sectional damage factors of RC beams at different impact time

    图  9  不同冲击高度时RC梁截面损伤因子

    Figure  9.  Sectional damage factors of RC beamsat different drop heights

    图  10  跨中挠度时程曲线

    Figure  10.  Midspan deflection time histories

    图  11  不同网格尺寸时截面损伤因子

    Figure  11.  Sectional damage factors for different mesh sizes

    图  12  不同箍筋间距下RC梁的动态损伤

    Figure  12.  Dynamic damage of RC beams at different spacings of stirrups

    图  13  不同箍筋间距下RC梁的截面损伤因子

    Figure  13.  Sectional damage factors of RC beams at different spacings of stirrups

    图  14  不同边界条件下RC梁的动态损伤

    Figure  14.  Dynamic damage of RC beams under different boundary conditions

    图  15  不同边界条件下RC梁的截面损伤因子

    Figure  15.  Sectional damage factors of RC beams under different boundary conditions

    图  16  不同边界条件下RC梁的碰撞力和跨中挠度时程曲线

    Figure  16.  Histories of impact force and midspan deflection of RC beams under different boundary conditions

    图  17  不同边界条件下RC梁各部分材料的能量耗散

    Figure  17.  Energy dissipation of the different parts under different boundary conditions

    图  18  不同冲头形状的落锤

    Figure  18.  Drop hammers with different impact noses

    图  19  不同冲击体下RC梁的碰撞力和跨中挠度时程曲线

    Figure  19.  Histories of impact force and midspan deflection of RC beams with different impactors

    图  20  不同冲击体下RC梁的碰撞力和跨中挠度时程曲线

    Figure  20.  Histories of impact force and midspan deflection of RC beams with different impactors

    图  21  不同撞击位置下RC梁的动态损伤

    Figure  21.  Dynamic damage of RC beams with different impact positions

    图  22  不同碰撞位置下RC梁的截面损伤因子

    Figure  22.  Sectional damage factors of RC beams with different impact positions

  • [1] LOEDOLFF M J. The behaviour of reinforced concrete cantilever columns under lateral impact load[D]. Stellenbosch: Stellenbosch University, 1989.
    [2] FUJIKAKE K, LI B, SOEUN S. Impact response of reinforced concrete beam and its analytical evaluation[J]. Journal of Structural Engineering, 2009, 135(8):938-950. doi: 10.1061/(ASCE)ST.1943-541X.0000039
    [3] SAATCI S, VECCHIO F J. Effects of shear mechanisms on impact behavior of reinforced concrete beams[J]. ACI structural Journal, 2009, 106(1):78-86.
    [4] 赵德博, 易伟建.钢筋混凝土梁抗冲击性能和设计方法研究[J].振动与冲击, 2015, 34(11):139-145. http://d.old.wanfangdata.com.cn/Periodical/zdycj201511025

    ZHAO Debo, YI Weijian. Anti-impact behavior and design method for RC beams[J]. Journal of Vibration and Shock, 2015, 34(11):139-145. http://d.old.wanfangdata.com.cn/Periodical/zdycj201511025
    [5] 许斌, 曾翔.冲击荷载作用下钢筋混凝土梁性能试验研究[J].土木工程学报, 2014, 47(2):41-51. http://cdmd.cnki.com.cn/Article/CDMD-10532-1016253853.htm

    XU Bin, ZENG Xiang. Experimental study on the behaviours of reinforced concrete beams under impact loading[J]. China Civil Engineering Journal, 2014, 47(2):41-51. http://cdmd.cnki.com.cn/Article/CDMD-10532-1016253853.htm
    [6] 刘飞, 罗旗帜, 蒋志刚.低速冲击下RC梁的动态响应和破坏机理研究[J].工程力学, 2015, 32(5):155-161. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505020.htm

    LIU Fei, LUO Qizhi, JIANG Zhigang. Dynamic response and failure mechanism of RC beams to low velocity impact[J]. Engineering Mechanics, 2015, 32(5):155-161. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201505020.htm
    [7] 姜华, 贺拴海, 王君杰.钢筋混凝土梁冲击试验数值模拟研究[J].振动与冲击, 2012, 31(15):140-145. doi: 10.3969/j.issn.1000-3835.2012.15.027

    JIANG Hua, HE Shuanhai, WANG Junjie. Numerical simulation of the imapct test of reinforced concrete beams[J]. Journal of Vibration and Shock, 2012, 31(15):140-145. doi: 10.3969/j.issn.1000-3835.2012.15.027
    [8] HALLQUIST J O. LS-DYNA keyword user's manual[M]. California:Livermore Software Technology Corporation, 2007.
    [9] MURRAY Y D. Users manual for LS-DYNA concrete material model 159: FHWA-HRT-05-062[R]. Federal Highway Adminstration, 2007.
    [10] JONES N. Structural impact[M]. Cambridge:Cambridge University Press, 2011.
    [11] 田力, 朱聪.碰撞冲击荷载作用下钢筋混凝土柱的损伤评估及防护技术[J].工程力学, 2013, 30(9):144-150. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201309023.htm

    TIAN Li, ZHU Cong. Damage evaluation and protection technique of RC columns unser impulsive load[J]. Engineering Mechanics, 2013, 30(9):144-150. http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201309023.htm
    [12] SHI Y C, HAO H, LI Z X. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads[J]. International Journal of Impact Engineering, 2008, 35(11):1213-1227. doi: 10.1016/j.ijimpeng.2007.09.001
    [13] CHEN F, YU T. Analysis of large deflection dynamic response of rigid-plastic beams[J]. Journal of Engineering Mechanics, 1993, 119(6):1293-1301. doi: 10.1061/(ASCE)0733-9399(1993)119:6(1293)
  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
活性材料与炸药环状复合内爆的准静态压力计算方法
朱剑雷 等, 爆炸与冲击, 2025
动载荷下固体推进剂损伤演化原位成像研究
苑永祥 等, 爆炸与冲击, 2025
考虑岩体破坏分区的岩石爆破爆炸荷载历程研究
孙鹏昌 等, 爆炸与冲击, 2024
冲击加载下一种稀土活性材料的力学特性和点火性能
李守佳 等, 高压物理学报, 2025
Hns基pbx炸药爆轰驱动平板实验及产物状态方程参数确定
李淑睿 等, 高压物理学报, 2023
固体推进剂低温点火结构完整性数值模拟
宋本耀 等, 上海理工大学学报, 2024
Ubiquitous superconducting diode effect in superconductor thin films
Hou, Yasen et al., PHYSICAL REVIEW LETTERS, 2023
Experimental study on the infuence of blast hole bottom cushion medium on blasting damage characteristics and strain evolution of rock mass
ROCK MECHANICS AND ROCK ENGINEERING
Study on internal rise law of fracture water pressure and progressive fracture mechanism of rock mass under blasting mpact
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY
Powered by
图(22)
计量
  • 文章访问数:  5507
  • HTML全文浏览量:  2015
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-06
  • 修回日期:  2017-09-21
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回