基于SPH方法模拟30 mm线膛炮波纹罩压垮过程的力学参数研究

王小峰 陶钢 任保祥 庞春桥 范强 刘龙

王小峰, 陶钢, 任保祥, 庞春桥, 范强, 刘龙. 基于SPH方法模拟30 mm线膛炮波纹罩压垮过程的力学参数研究[J]. 爆炸与冲击, 2019, 39(1): 012201. doi: 10.11883/bzycj-2017-0291
引用本文: 王小峰, 陶钢, 任保祥, 庞春桥, 范强, 刘龙. 基于SPH方法模拟30 mm线膛炮波纹罩压垮过程的力学参数研究[J]. 爆炸与冲击, 2019, 39(1): 012201. doi: 10.11883/bzycj-2017-0291
WANG Xiaofeng, TAO Gang, REN Baoxiang, PANG Chunqiao, FAN Qiang, LIU Long. Mechanical parameters of the overwhelm process of fluted liner for 30 mm rifled gun based on SPH method[J]. Explosion And Shock Waves, 2019, 39(1): 012201. doi: 10.11883/bzycj-2017-0291
Citation: WANG Xiaofeng, TAO Gang, REN Baoxiang, PANG Chunqiao, FAN Qiang, LIU Long. Mechanical parameters of the overwhelm process of fluted liner for 30 mm rifled gun based on SPH method[J]. Explosion And Shock Waves, 2019, 39(1): 012201. doi: 10.11883/bzycj-2017-0291

基于SPH方法模拟30 mm线膛炮波纹罩压垮过程的力学参数研究

doi: 10.11883/bzycj-2017-0291
详细信息
    作者简介:

    王小峰(1993-), 男, 博士研究生

    通讯作者:

    陶钢, taogang@njust.edu.cn

  • 中图分类号: O383;TJ410;TJ413.2

Mechanical parameters of the overwhelm process of fluted liner for 30 mm rifled gun based on SPH method

  • 摘要: 为研究高旋转对30 mm聚能装药破甲作用的影响机理及自旋补偿原理,采用LS-DYNA有限元软件中的SPH方法模拟30 mm线膛炮波纹罩的压垮过程,得到粒子的实际运动可分解成向心运动与绕中心圆周切线运动,提出压垮过程的4个阶段:压垮前期、缓冲期、波纹槽区域粒子速度增大期和中心粒子相互作用期。射流形成层沿逆时针方向旋转,而形成杵体的材料以相反方向旋转。结果表明:波纹罩特殊设计可以补偿旋转扰动对30 mm聚能装药侵彻作用的负面影响。
  • 图  1  波纹罩结构参数及分类

    Figure  1.  Structural parameters and classification of fluted liner

    图  2  30 mm小口径炮弹基本几何参数

    Figure  2.  Basic geometric parameters of 30 mm small-caliber shell

    图  3  二维波纹罩模型

    Figure  3.  Two-dimensional fluted liner model

    图  4  SPH节点计算模型

    Figure  4.  Calculation model of SPH node

    图  5  波纹罩压垮过程等效应力变化云图

    Figure  5.  Equivalent stress variation cloud of fluted liner's overwhelm process

    图  6  波纹罩角速度变化曲线

    Figure  6.  Curve of fluted liner's angular velocity

    图  7  波纹槽区域选取的粒子

    Figure  7.  Particles selected in fluted groove area

    图  8  波纹槽区域粒子速度变化曲线

    Figure  8.  Curves of particle velocity in fluted groove area

    图  9  不同粒子密度时SPH计算模型

    Figure  9.  SPH calculation model for different particle densities

    图  10  不同粒子密度时波纹槽顶端与底端粒子速度曲线

    Figure  10.  Particle velocity curves at the top and bottom of fluted groove at different particle densities

    图  11  波纹槽前端粒子速度分布

    Figure  11.  Particle velocity distribution at the front of fluted groove area

    表  1  药型罩材料参数

    Table  1.   Material parameters of liner

    ρ/(g·cm-3) G/GPa A/GPa B/GPa n c m Tm/K
    8.96 46 0.09 0.292 0.31 0.025 1.09 1 356
    下载: 导出CSV

    表  2  药型罩状态方程参数

    Table  2.   State equation parameters of liner

    C S1 S2 S3 γ0 A
    0.394 1.489 0 0 2.02 0.47
    下载: 导出CSV
  • [1] 荀扬, 晏麓晖, 曾首义.聚能装药技术研究进展综述[J].科学技术与工程, 2008, 8(15):4251-4257. doi: 10.3969/j.issn.1671-1815.2008.15.040

    XUN Yang, YAN Luhui, ZENG Shouyi. Process of the shaped charge technique[J]. Science & Technology and Engineering, 2008, 8(15):4251-4257. doi: 10.3969/j.issn.1671-1815.2008.15.040
    [2] RASSOKHA S S. Performance calculation of shaped charges with shear-formed liners[J]. Journal of Applied Mechanics, 2013, 80(3):979-985. http://adsabs.harvard.edu/abs/2013JAM....80c1703R
    [3] 王铁福, 石连捷.旋压药型罩的旋转补偿效应与旋压参数关系的研究[J].爆炸与冲击, 1996, 16(4):361-366. http://www.bzycj.cn/CN/abstract/abstract10544.shtml

    WANG Tiefu, SHI Lianjie. Study on the relationship between rotation compensation effect and spinning parameter of rotary-pressed shaped charge liner[J]. Explosion and Shock Waves, 1996, 16(4):361-366. http://www.bzycj.cn/CN/abstract/abstract10544.shtml
    [4] EICHELBERGER R J. "Spin compensation" in critical review of shaped charge information: Report No.905[R]. Ballistic Research Laboratories, 1954: 215-253.
    [5] SIMON J, DIPERSIO R, EICHELBERGER R J. Shaped charge performance with linear fluted liners[R]. Army Ballistic Research Lab Aberdeen Proving Ground, Maryland, 1959.
    [6] PUGH E M, EICHELBERGER R J. Fluted liners for shaped charges: US3726224[P]. 1973-4-10.
    [7] 王铁福, 石连捷, 朱鹤荣.旋压药型罩不对称织构分析[J].弹道学报, 1991(3):71-73. http://www.cqvip.com/QK/92261X/199103/4001596044.html

    WANG Tiefu, SHI Lianjie, ZHU Herong. Analysis of asymmetric texture for rotary-pressed shaped charge liner[J]. Journal of Ballistics, 1991(3):71-73. http://www.cqvip.com/QK/92261X/199103/4001596044.html
    [8] 贾万明, 张全孝, 白志国, 等.药型罩制造技术的发展[J].稀有金属材料与工程, 2007, 36(9):1511-1516. doi: 10.3321/j.issn:1002-185x.2007.09.002

    JIA Wanming, ZHANG Quanxiao, BAI Zhiguo, et al. Progress of manufacturing technology of shaped charge liner[J]. Rare Metal Materials and Engineering, 2007, 36(9):1511-1516. doi: 10.3321/j.issn:1002-185x.2007.09.002
    [9] SCHWARTZ A J, BUSCHE M J, BECKER R, et al. Role of texture in spin formed Cu shaped-charge liners[C]//The 19th International Symposium on Ballistics. Switzerland, 2001: 733-740.
    [10] 李惠明, 陈智刚, 侯秀成, 等.阶梯式旋转EFP成形机理的数值研究[J].弹箭与制导学报, 2010, 30(1):115-118. doi: 10.3969/j.issn.1673-9728.2010.01.035

    LI Huiming, CHEN Zhigang, HOU Xiucheng, et al. Numerical simulation of formation mechanism of ladder-shaped rotational EFP[J]. Journal of Projectiles, Rockets and Guidance, 2010, 30(1):115-118. doi: 10.3969/j.issn.1673-9728.2010.01.035
    [11] 黄静, 张庆明.滑移爆轰作用下药型罩的变形分析[J].北京理工大学学报, 2009, 29(4):286-289. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200904002

    HUANG Jing, ZHANG Qingming. Distortion of a liner under sliding detonation[J]. Journal of Beijing Institute of Technology, 2009, 29(4):286-289. http://d.old.wanfangdata.com.cn/Periodical/bjlgdxxb200904002
    [12] 李磊, 沈兆武, 李学岭, 等.SPH方法在聚能装药射流三维数值模拟中的应用[J].爆炸与冲击, 2012, 32(3):316-322. doi: 10.3969/j.issn.1001-1455.2012.03.015

    LI Lei, SHEN Zhaowu, LI Xueling, et al. Application of SPH method to numerical simulation of shaped charge jet[J]. Explosion and Shock Waves, 2012, 32(3):316-322. doi: 10.3969/j.issn.1001-1455.2012.03.015
    [13] LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. Astronomical Journal, 1977, 82(12):1013-1024. DOI: 10.1086/112164.
    [14] LIU M B, LIU G R, ZONG Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers and Fluids, 2003, 32(3):305-322. doi: 10.1016/S0045-7930(01)00105-0
    [15] РАССОХА C C, БАБКИН А.В, ЛАДОВ C B, et al. Об использовании рифленых облицовок в кумулятивных снарядах к 30 mm нарезному орудию[J]. Инженерный Журнал:Наука и Инновации, 2013(14):96-107.
    [16] ДУБОВСКОЙ М А. Особенности формирования струи во вращающихся кумулятивных зарядах и оценка возможности повышения бронебойного действия кумулятивных боеприпасов: Научно-исследовательский институт, по оборонной технике Совета Министров СССР[R]. 1964.
    [17] KOCH A, JAGGI P, JAUN W, et al. Study of spin-compensated shaped charges[C]//Proceeding of the 19th International Symposium on Ballistics. 2001: 1501-1508.
    [18] COX C M. Warhead mechanisms study[R]. Firestone Tire and Rubber Company, 1964.
    [19] 徐金中, 汤文辉.高速碰撞SPH方法模拟中的初始光滑长度和粒子间距[J].计算物理, 2009, 26(4):548-552. doi: 10.3969/j.issn.1001-246X.2009.04.008

    XU Jinzhong, TANG Wenhui. Initial smoothing length and space between particles in SPH method for numerical simulation of high-speed impacts[J]. Chinese Journal of Computational Physics, 2009, 26(4):548-552. doi: 10.3969/j.issn.1001-246X.2009.04.008
    [20] 时党勇.基于ANSYS/LS-DYNA 8.1进行显式动力分析[M].北京:清华大学出版社, 2005.
    [21] 白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社, 2005.
    [22] 程波, 李文彬, 郑宇, 等.ANPyO和8701的冲击波感度对比研究[J].兵工自动化, 2014(2):15-17. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201402005

    CHENG Bo, LI Wenbin, ZHENG Yu, et al. Study on shock sensitivities of ANPyO and 8701[J]. Ordnance Industry Automation, 2014(2):15-17. http://d.old.wanfangdata.com.cn/Periodical/bgzdh201402005
    [23] 陶为俊, 浣石.RDX-8701炸药二维冲击起爆状态的研究[C]//第八届全国爆炸力学学术会议论文集.井岗山, 2007.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5009
  • HTML全文浏览量:  1980
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-06
  • 修回日期:  2018-03-05
  • 刊出日期:  2019-01-05

目录

    /

    返回文章
    返回