舷侧水对船舶抗碰撞性能的影响

胡锦文 尤小健 闻心怡 彭晓钧 李天鹞

胡锦文, 尤小健, 闻心怡, 彭晓钧, 李天鹞. 舷侧水对船舶抗碰撞性能的影响[J]. 爆炸与冲击, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319
引用本文: 胡锦文, 尤小健, 闻心怡, 彭晓钧, 李天鹞. 舷侧水对船舶抗碰撞性能的影响[J]. 爆炸与冲击, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319
HU Jinwen, YOU Xiaojian, WEN Xinyi, PENG Xiaojun, LI Tianyao. Influnence of side water on anti-collision performance of a ship[J]. Explosion And Shock Waves, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319
Citation: HU Jinwen, YOU Xiaojian, WEN Xinyi, PENG Xiaojun, LI Tianyao. Influnence of side water on anti-collision performance of a ship[J]. Explosion And Shock Waves, 2019, 39(2): 023303. doi: 10.11883/bzycj-2017-0319

舷侧水对船舶抗碰撞性能的影响

doi: 10.11883/bzycj-2017-0319
基金项目: 

海洋核动力平台总体关键技术研究及装备研发 NY20150202

详细信息
    作者简介:

    胡锦文(1988-), 男, 硕士, 高级工程师, 2007.hujinwen@163.com

  • 中图分类号: O383;U662.2

Influnence of side water on anti-collision performance of a ship

  • 摘要: 为了评估舷侧液舱在大型撞击物下的抗碰撞特性,采用有限元法和简化理论法对典型球鼻艏在不同撞击速度和液舱水线工况下的舷侧外板和内板的抗破坏性能进行了分析。结果表明:舷侧水效应可以显著提升双舷侧结构的抗破坏性能,但是提升的幅度是有限的,而且水效应对外板的破坏作用力影响较小,对舷侧内板的破坏作用力影响较大;当球鼻艏撞击速度逐渐增高时,舷侧外板和内板的破坏作用力也逐渐增大,但增大速率逐渐降低,其中舷侧外板较舷侧内板的增大速率更快趋于平缓。对不同液舱水线的分析表明:舷侧液舱水线在受撞击的强框架以上时,对抗碰撞性能影响较小;当舷侧液舱水线在受撞击的强框架以下时,对舷侧外板的抗碰撞特性影响较小,但对舷侧内板的抗碰撞特性影响很大,并且随着球鼻艏碰撞速度的增高,不同水线位置对船舶抗碰撞性能的影响也随之增大。
  • 图  1  舰船结构横剖面图

    Figure  1.  Cross section of side structure

    图  2  舷侧结构分析模型

    Figure  2.  Analysis models of side structures

    图  3  不同时刻舷侧结构的应力和位移分布

    Figure  3.  Stress and deformation distribution of side structures at different moments

    图  4  球鼻艏位移与反作用力的关系曲线

    Figure  4.  Displacement-reaction force curves of the bulbous bow

    图  5  不同撞击速度下外板和内板破裂时的反作用力

    Figure  5.  Broken reaction forces of outside and inner shells at different impact velocities

    图  6  不同撞击速度下舷侧结构的临界破坏能

    Figure  6.  Critical damage energy of side structure at different impact velocities

    图  7  不同液舱水线面工况

    Figure  7.  Different tank waterline load cases

    图  8  不同速度下外板破裂时(虚线)和内板破裂时(实线)的反作用力

    Figure  8.  Broken reaction forces of outside (broken line) and inner (solid line) shells at different impact velocities

    图  9  不同撞击速度下舷侧结构的临界破坏能

    Figure  9.  Critical damage energy of side structures at different impact velocites

    图  10  球鼻艏碰撞舷侧外板简化分析几何模型

    Figure  10.  Simplified geometry models for analyzing a typical bulbous bow impacting side structures

    图  11  球鼻艏与舷侧碰撞过程中所受到的反作用力

    Figure  11.  Reaction force of the bulbous bow in the process of collision

    表  1  外板破坏时最大反作用力分析结果对比

    Table  1.   Comparison of the maximum reaction forces when the outside shell is broken

    撞击速度/(m·s-1) 仿真结果/MN 理论结果/MN 相对误差/%
    0.5 4.15 3.93 5.3
    1 4.31 4.02 6.7
    2 4.42 4.18 5.5
    下载: 导出CSV
  • [1] 胡志强, 崔维成.船舶碰撞机理与耐撞性结构设计研究综述[J].船舶力学, 2005, 9(2):131-142. DOI: 10.3969/j.issn.1007-7294.2005.02.019.

    HU Zhiqiang, CUI Weicheng. A review of the researches on the ship collision mechanisms and the structural designs against collision[J]. Journal of Ship Mechanics, 2005, 9(2):131-142. DOI: 10.3969/j.issn.1007-7294.2005.02.019.
    [2] CHO S R, LEE H S. Experimental and analytical investigations on the response of stiffened paltes subjected to lateral collisions[J]. Marine Structure, 2009, 22(1):84-95. DOI: 10.1016/j.marstruc.2008.06.003.
    [3] WANG G. Structural analysis of ships' collision and grounding[D]. University of Tokyo, 1995.
    [4] WANG G, KIKUO A, LIU D. Behavior of a double hull in a variety of stranding or collision scenarios[J]. Marine Structures, 2000, 13(3):147-187. DOI: 10.1016/S0951-8339(00)00036-8.
    [5] 刘元丹, 刘敬喜, 肖曙明, 等.双壳船内壳和外壳结构耐撞性能的分析和比较[J].中国造船, 2012, 53(3):121-128. DOI: 10.3969/j.issn.1000-4882.2012.03.016.

    LIU Yuandan, LIU Jingxi, XIAO Shuming, et al. Comparison of crashworthiness of inside shell with that of outside one for double-hull structures[J]. Shipbuilding of China, 2012, 53(3):121-128. DOI: 10.3969/j.issn.1000-4882.2012.03.016.
    [6] 王自力, 顾永宁.船舶碰撞动力学过程的数值仿真研究[J].爆炸与冲击, 2001, 21(1):29-34. DOI: 10.3321/j.issn:1001-1455.2001.01.007.

    WANG Zili, GU Yongning. Numerical simulations of ship collisions[J]. Explosion and Shock Waves, 2001, 21(1):29-34. DOI: 10.3321/j.issn:1001-1455.2001.01.007.
    [7] OZGUC O, DAS P K, BARLTROP N. A comparative study on the structural integrity of single and double side skin bulk carriers under collision damage[J]. Marine Structures, 2005, 18(7):511-547. DOI: 10.1016/j.marstruc.2006.01.004.
    [8] ZHANG A, SUZUKI K. Numerical simulation of fluid-structure interaction of liquid cargo filled tank during ship collision using the ALE finite element method[J]. International Journal of Crashworthiness, 2006, 11(4):291-298. DOI: 10.1533/ijcr.2005.0105.
    [9] 朱锡, 梅志远, 徐顺棋, 等.高速破片侵彻舰用复合装甲模拟试验研究[J].兵工学报, 2003, 24(4):530-533. DOI: 10.3321/j.issn:1000-1093.2003.04.023.

    ZHU Xi, MEI Zhiyuan, XU Shunqi, et al. Experiment research on the penetration of high-velocity fragments in composite warship armor[J]. Acta Armamentar, 2003, 24(4):530-533. DOI: 10.3321/j.issn:1000-1093.2003.04.023.
    [10] ZAID M, PAUL B. Oblique perforation of a thin plate by a truncated conical projectile[J]. Journal of the Frankin institute, 1959, 26(8):22-24. DOI: 10.1016/0016-0032(59)90354-0.
    [11] LANDKOF B, GOLDSMITH W. Petalling of thin metallic plates during penetration by cylindro-conical projection[J]. International Journal of Solids and Structures, 1985, 21(3):245-246. doi: 10.1016/0020-7683(85)90021-6
    [12] RAVID M, BONDER S R, HOLCMAN I. Penetration into thick targets-refinement of a 2D dynamic plasticity approach[J]. International Journal of Impact Engineering, 1994, 15(4):491-499. DOI: 10.1016/0734-743X(94)80030-D.
    [13] 徐双喜, 吴卫国, 李晓彬, 等.舰船舷侧防护液舱舱壁对爆炸破片的防御作用[J].爆炸与冲击, 2010, 30(4):395-400. DOI: 10.11883/1001-1455(2010)04-0395-06.

    XU Shuangxi, WU Weiguo, LI Xiaobin, et al. Protective effect of guarding fluid cabin bulkhead under attaking by explosion fragments[J]. Explosion and Shock Waves, 2010, 30(4):395-400. DOI: 10.11883/1001-1455(2010)04-0395-06.
    [14] 孔祥韶, 吴卫国, 刘芳, 等.舰船舷侧防护液舱对爆炸破片的防御作用研究[J].船舶力学, 2014, 18(8):996-1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015.

    KONG Xiangshao, WU Weiguo, LIU Fang, et al. Research on protective effect of guarding fliud cabin under attacking by explosion fragments[J]. Journal of Ship Mechanics, 2014, 18(8):996-1004. DOI: 10.3969/j.issn.1007-7294.2014.08.015.
    [15] 张延昌, 杨代玉, 王自力.舱内液体对VLCC舷侧结构碰撞性能的影响[J].爆炸与冲击, 2010, 30(5):479-486. DOI: 10.11883/1001-1455(2010)05-0479-08.

    ZHANG Yanchang, YANG Daiyu, WANG Zili. Effects of liquid cargo on side structure behaviors of a VLCC in collision[J]. Explosion and Shock Waves, 2010, 30(5):479-486. DOI: 10.11883/1001-1455(2010)05-0479-08.
    [16] ZHANG A N, KATSUYUKI S. A comparative study of numerical simulations for fluid-structure interation of liquid-filled tank during ship collision[J]. Ocean Engineering, 2007, 34:645-652. DOI: 10.1016/j.oceaneng.2006.06.001.
    [17] EHLERS S, BROEKHUIJSEN J, ALSOS H S, et al. Simulating the collision response of ship side structures:a failure criteria benchmark study[J]. International Shipbuilding Progress, 2008, 55(1):127-144. DOI: 10.3233/ISP-2008-0042.
    [18] MACRO A, CASTELLESTTI L, MAURIZIO T. Fluid-structure interaction of water filled tanks during the impact with the ground[J]. International Journal of Impact Engineering, 2005, 31:235-254. DOI: 10.1016/j.ijimpeng.2003.12.005.
    [19] 中国船级社.内河船舶抗碰撞能力评估指南[R].北京: 中国船级社, 2012.
    [20] LECYSYN N, BONYDANDRIEUX A, APRIN L, et al. Experimental study of hydraulic ram effects on a liquid storage tanks:analysis of overpressure and cavitation induced by a high-speed projectile[J]. Journal of Hazardous Materials, 2010, 178(1/2/3):635-643. DOI: 10.1016/j.jhazmat.2010.01.132.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  5666
  • HTML全文浏览量:  2014
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-03
  • 修回日期:  2017-12-27
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回