圆盘结构下旋转爆震波传播特性的实验研究

夏镇娟 周胜兵 马虎 卓长飞 周长省

夏镇娟, 周胜兵, 马虎, 卓长飞, 周长省. 圆盘结构下旋转爆震波传播特性的实验研究[J]. 爆炸与冲击, 2018, 38(5): 937-947. doi: 10.11883/bzycj-2017-0329
引用本文: 夏镇娟, 周胜兵, 马虎, 卓长飞, 周长省. 圆盘结构下旋转爆震波传播特性的实验研究[J]. 爆炸与冲击, 2018, 38(5): 937-947. doi: 10.11883/bzycj-2017-0329
XIA Zhenjuan, ZHOU Shengbing, MA Hu, ZHUO Changfei, ZHOU Changsheng. Experimental study on the propagation characteristics of rotating detonation waves in the plane-radial structure[J]. Explosion And Shock Waves, 2018, 38(5): 937-947. doi: 10.11883/bzycj-2017-0329
Citation: XIA Zhenjuan, ZHOU Shengbing, MA Hu, ZHUO Changfei, ZHOU Changsheng. Experimental study on the propagation characteristics of rotating detonation waves in the plane-radial structure[J]. Explosion And Shock Waves, 2018, 38(5): 937-947. doi: 10.11883/bzycj-2017-0329

圆盘结构下旋转爆震波传播特性的实验研究

doi: 10.11883/bzycj-2017-0329
基金项目: 

国家自然科学基金项目 51606100

江苏省自然科学基金项目 BK20150782

中央高校基本科研业务费专项资金项目 30915118836

详细信息
    作者简介:

    夏镇娟(1991-), 女, 博士研究生

    通讯作者:

    卓长飞, njust203zcf@126.com

  • 中图分类号: O381;V235.22

Experimental study on the propagation characteristics of rotating detonation waves in the plane-radial structure

  • 摘要: 为研究圆盘结构下旋转爆震波的传播特性,通过改变反应物的质量流率及当量比,在非预混圆盘形旋转爆震模型发动机(rotating denonation engine,RDE)上进行实验研究。结果表明,爆震波在圆盘形RDE上成功起始并能够连续传播,得到了两种传播模态:单波模态和双波模态,在发动机工作过程中发现,集气腔与燃烧室存在相互作用。当反应物质量流率小于159.20 g/s时,旋转爆震波以单波模态稳定传播,爆震波传播频率为4.56~4.62 kHz,越靠近燃烧室外圆,爆震波的压力峰值及传播速度越大;当质量流率大于186.89 m/s时,旋转爆震波以双波模态传播,传播频率为8.59~8.64 kHz。双波传播模态经历四个阶段:起爆阶段的单波段、稳定双波段、不稳定双波段、排气阶段转单波段。当质量流率介于159.20~186.89 g/s之间时,旋转爆震波以单/双波混合模态传播。反应物当量比在1附近时,爆震波的传播过程较稳定,偏离1,爆震波传播不稳定,初始阶段起爆失败或传播过程中存在间断。
  • 图  1  圆盘形RDE示意图

    Figure  1.  Plane-radial RDE model

    图  2  燃烧室两壁面的传感器布置

    Figure  2.  Sensor arrangement on both sides of the combustor

    图  3  实验时序图

    Figure  3.  Schematic diagram of experiment time sequence

    图  4  RDE的压力曲线

    Figure  4.  Pressure curves of RDE

    图  5  燃烧室内的压力变化

    Figure  5.  Variation of pressure in the combustor

    图  6  不同燃烧室径向位置的爆震波参数

    Figure  6.  Detonation parameters in different radial positions of combustor

    图  7  单波传播模态下的RDW压力和频率分布

    Figure  7.  Pressure and frequency of RDW in single-wave propagation mode

    图  8  双波传播模态下的爆震波压力和频率分布

    Figure  8.  Pressure and frequency of detonation wave in two-wave propagation mode

    图  9  单、双波混合传播模态下的爆震波频率分布

    Figure  9.  Frequency of RDW in the transition mode (single/two-wave mode)

    图  10  质量流率对爆震波参数的影响

    Figure  10.  Effect of mass flow rate on detonation parameters

    图  11  不同当量比下RDW的压力曲线分布(d=102 mm)

    Figure  11.  Pressure distribution of RDW in different equivalence ratio(d=102 mm)

    表  1  实验工况表

    Table  1.   Experimental conditions

    工况 H2质量流率/(g·s-1) 总质量流率/(g·s-1) 当量比φ 传播模态
    1 3.76 132.44 1 单波
    2 4.15 146.38 1 单波
    3 3.34 144.58 0.81 单波
    4 4.91 146.14 1.20 单波
    5 3.36 118.50 1 单波
    6 4.15 119.29 1.24 单/双波
    7 4.51 159.20 1 单波
    8 4.91 173.05 1 单/双波
    9 5.30 186.89 1 双波
    10 5.69 200.74 1 双波
    11 6.08 214.58 1 双波
    下载: 导出CSV
  • [1] WOLANSKI P. Detonation propulsion[J]. Proceedings of the Combustion Institute, 2013, 34:125-158. DOI: 10.1016/j.proci.2012.10.005.
    [2] BRAUN E M, LU F K, WILSON D R, et al. Air breathing rotating detonation wave engine cycle analysis[J]. Aerospace Science and Technology, 2013, 27:201-208. DOI: 10.1016/j.ast.2012.08.010.
    [3] WANG C, LIU W, LIU S, et al. Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen[J]. International Journal of Hydrogen Energy, 2015, 40:9530-9538. DOI: 10.1016/j.ijhydene.2015.05.060.
    [4] DEBARMORE N D, KING P I, SCHAUER F R. Nozzle guide vane integration into rotating detonation engine: AIAA 2013-1030[R]. USA: AIAA, 2013.
    [5] NAPLES A, HOKE J, SCHAUER F. Rotating detonation engine interaction with an annular ejector: AIAA 2014-0287[R]. USA: AIAA, 2014.
    [6] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonation of fuel-air mixtures[J]. Combustion, Explosion, and Shock Waves, 2006, 42(4):463-471. DOI: 10.1007/s10573-006-0076-9.
    [7] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216. DOI: 10.2514/1.17656.
    [8] KINDRACKI J, WOLANSKI P, GUT Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J]. Shock Waves, 2011, 21:75-84. DOI: 10.1007/s00193-011-0298-y.
    [9] ANAND V, GEORGE A S, DRISCOLL R, et al. Analysis of air inlet and fuel plenum behavior in a rotating detonation combustor[J]. Experimental Thermal and Fluid Science, 2016, 70:408-416. DOI: 10.1016/j.expthermflusci.2015.10.007.
    [10] ANAND V, GEORGE A S, DRISCOLL R, et al. Characterization of instabilities in a rotating detonation combustor[J]. International Journal of Hydrogen Energy, 2015, 40:16649-16659. DOI: 10.1016/j.ijhydene.2015.09.046.
    [11] ANAND V, GEORGE A S, GUTMARK E. Amplitude modulated instability in reactants plenum of a rotating detonation combustor[J]. International Journal of Hydrogen Energy, 2017, 42:12629-12644. DOI: 10.1016/j.ijhydene.2017.03.218.
    [12] LIN W, ZHOU J, LIU S, et al. Experimental study on propagation mode of H2/air continuously rotating detonation wave[J]. International Journal of Hydrogen Energy, 2015, 40:1980-1993. DOI: 10.1016/j.ijhydene.2014.11.119.
    [13] 刘世杰, 刘卫东, 林志勇, 等.连续旋转爆震波传播过程研究(Ⅰ):同向传播模式[J].推进技术, 2014, 35(1):138-144. DOI: 10.13675/j.cnki.tjjs.2014.01.016.

    LIU Shijie, LIU Weidong, LIN Zhiyong, et al. Research on continuous rotating detonation wave propagation process(Ⅰ):one direction mode[J]. Journal of Propulsion Technology, 2014, 35(1):138-144. DOI: 10.13675/j.cnki.tjjs.2014.01.016.
    [14] 刘世杰, 林志勇, 刘卫东, 等.连续旋转爆震波传播过程研究(Ⅱ):双波对撞传播模式[J].推进技术, 2014, 35(2):269-275. DOI: 10.13675/j.cnki.tjjs.2014.02.031.

    LIU Shijie, LIN Zhiyong, LIU Weidong, et al. Research on continuous rotating detonation wave propagation process(Ⅱ):two-wave collision propagation mode[J]. Journal of Propulsion Technology, 2014, 35(2):269-275. DOI: 10.13675/j.cnki.tjjs.2014.02.031.
    [15] YANG C, WU X, MA H. Experimental research on initiation characteristics of a rotating detonation engine[J]. Experimental Thermal and Fluid Science, 2016, 71:154-163. DOI: 10.1016/j.expthermflusci.2015.10.019.
    [16] 彭磊, 王栋, 裴晨曦, 等.旋转爆震发动机爆震波建立过程实验研究[J].推进技术, 2016, 37(10):1801-1809. DOI: 10.13675/j.cnki.tjjs.2016.10.001.

    PENG Lei, WANG Dong, PEI Chenxi, et al. Experiment research on establishing process of rotating detonation wave[J]. Journal of Propulsion Technology, 2016, 37(10):1801-1809. DOI: 10.13675/j.cnki.tjjs.2016.10.001.
    [17] TANG X, WANG J, SHAO Y. Three-dimensional numerical investigations of the rotating detonation engine with a hollow combustor[J]. Combustion and Flame, 2015, 162:997-1008. DOI: 10.1016/j.combustflame.2014.09.023.
    [18] YAO S, TANG X, LUAN M, et al. Numerical study of hollow rotating detonation engine with different fuel injection area ratios[J]. Proceedings of the Combustion Institute, 2017, 36:2649-2655. DOI: 10.1016/j.proci.2016.07.126.
    [19] ZHANG H, LIU W, LIU S. Experimental investigations on H2/air rotating detonation wave in the hollow chamber with Laval nozzle[J]. International Journal of Hydrogen energy, 2017, 42:3363-3370. DOI: 10.1016/j.ijhydene.2016.12.038.
    [20] ANAND V, GEORGE A S, GUTMARK E. Hollow rotating detonation combustor: AIAA 2016-0124[R]. USA: AIAA, 2016.
    [21] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F, et al. Detonation of a coal-air mixture with addition of hydrogen in plane-radial vortex chambers[J]. Combustion, Explosion, and Shock Waves, 2011, 47(4):473-482. DOI: 10.1134/S0010508211040113.
    [22] NAKAGAMI S, MATSUOKA K, KASAHARA J, et al. Visualization of rotating detonation waves in a plane combustor with a cylindrical wall injector: AIAA 2015-0878[R]. USA: AIAA, 2015.
    [23] ISHIYAMA C, MIYAZAKI K, NAKAGAMI S, et al. Experimental study of research of centrifugal-compressor-radial-turbine type rotating detonation engine: AIAA 2016-5103[R]. USA: AIAA, 2016.
    [24] HIGASHI J, ISHIYAMA C, NAKAGAMI S, et al. Experimental study of disk-shaped rotating detonation turbine engine: AIAA 2017-1286[R]. USA: AIAA, 2017.
    [25] FUJⅡ J, KUMAZAWA Y, MATSUO A, et al. Numerical investigation on detonation velocity in rotating detonation engine chamber[J]. Proceedings of the Combustion Institute, 2017, 36:2665-2672. DOI: 10.1016/j.proci.2016.06.155.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  5717
  • HTML全文浏览量:  1794
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-08
  • 修回日期:  2018-01-15
  • 刊出日期:  2018-09-25

目录

    /

    返回文章
    返回