高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应

钟冬望 龚相超 涂圣武 黄雄

钟冬望, 龚相超, 涂圣武, 黄雄. 高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应[J]. 爆炸与冲击, 2019, 39(3): 033102. doi: 10.11883/bzycj-2017-0334
引用本文: 钟冬望, 龚相超, 涂圣武, 黄雄. 高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应[J]. 爆炸与冲击, 2019, 39(3): 033102. doi: 10.11883/bzycj-2017-0334
ZHONG Dongwang, GONG Xiangchao, TU Shengwu, HUANG Xiong. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave[J]. Explosion And Shock Waves, 2019, 39(3): 033102. doi: 10.11883/bzycj-2017-0334
Citation: ZHONG Dongwang, GONG Xiangchao, TU Shengwu, HUANG Xiong. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave[J]. Explosion And Shock Waves, 2019, 39(3): 033102. doi: 10.11883/bzycj-2017-0334

高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应

doi: 10.11883/bzycj-2017-0334
基金项目: 国家自然科学基金(51574184)
详细信息
    作者简介:

    钟冬望(1963- ),男,博士,教授,zhongdw123@wust.edu.cn

    通讯作者:

    龚相超(1974- ),男,博士研究生,副教授,gxc741@163.com

  • 中图分类号: O382; TD235.1

Dynamic responses of PE pipes directly buried in high saturated clay to blast wave

  • 摘要: 为了解决爆破作业对近距离埋地管道的安全评估问题,对高饱和粘土中爆炸波作用下聚乙烯(polyethylene, PE)管道进行了一系列管道动态响应的原型实验,得到了不同药量下管道动应变、动压力的实验数据和管体及地面的振速数据。实验结果表明:PE管动应变峰值同比例距离具有良好的幂函数衰减关系,在6~11 m/kg1/3比例距离范围内,PE管的环向峰值应变衰减指数(绝对值)比轴向峰值应变衰减指数大;管道动态响应的主振频率略高于土体的主振频率,两者在同一量级,管道合成速度衰减指数大体和管道轴向应变衰减指数相当;压电陶瓷片所测得的电压信号和同测点的应变变化率信号具有较强的相关性。高饱和黏性土由于含水量较高,近距离柔性PE管因受到局部冲击会产生较大的环向应变,管道安全计算时应充分考虑这一因素;随着比例距离的增大,环向应变水平降低,轴向应变水平相对增强;压电陶瓷片因为具有良好可靠的动态性能,作为埋地管道现场监测的技术手段值得采用和推广。
  • 图  1  拉力和绝对伸长的关系曲线

    Figure  1.  Relation between tensile force and absolute extension

    图  2  实验现场示意图

    Figure  2.  Diagram of experimental site

    图  3  管道贴片示意图

    Figure  3.  Location of strain gauges and PZT pieces on the pipe

    图  4  爆源和PE管位置示意图

    Figure  4.  Location of PE pipe and explosion source

    图  5  两种应变仪采集的典型信号

    Figure  5.  Typical signals detected by DH5937 and UT3408

    图  6  位置3-1和3-3的环向和轴向最大压应变衰减曲线

    Figure  6.  The maximum hoop and axial strains at positions 3-1 and 3-3 varying with scaled distance

    图  7  位置3-2和3-4的环向和轴向最大应变衰减曲线

    Figure  7.  The maximum hoop and axial strains at positions 3-2 and 3-4 varying with scaled distance

    图  8  位置2-3和3-3的环向最大压应变

    Figure  8.  The maximum hoop compressive strains at positions 2-3 and 3-3

    图  9  位置2-3和3-3的轴向最大拉应变

    Figure  9.  The maximum axial tensile strains at positions 2-3 and 3-3

    图  10  位置2-1环向最大拉和压应变

    Figure  10.  The maximum hoop tensile and compressive strains at position 2-1

    图  11  位置3-1环向和轴向最大应变

    Figure  11.  The maximum hoop and axial strains at position 3-1

    图  12  PE管和地表振动速度信号(Q=100 g)

    Figure  12.  The vibration velocity signals of the PE pipe and ground (Q=100 g)

    图  13  地表主振频率随药量的衰减

    Figure  13.  Main frequency attenuation of ground vibration with explosive charge

    图  14  地表和管端合成速度随比例距离的衰减

    Figure  14.  Resultant velocity attenuation of the pipe and ground with scaled distance

    图  15  典型的压电陶瓷片信号

    Figure  15.  The typical signal of PZT voltage

    图  16  位置3-1轴向应变时程曲线

    Figure  16.  The time history curve of axial strain at position 3-1

    图  17  位置3-1轴向应变率和电压时程曲线

    Figure  17.  The time history curves of PZT voltage and axial strain rate at position 3-1

    表  1  不同深度土体纵波波速

    Table  1.   Longitudinal wave velocities of soil at different depths

    实验编号探头类型埋深/cm探头距离/m纵波声速/(m·s−1)
    1声发射探头 200.5853
    2水介质耦合探头 600.5891
    3水介质耦合探头1000.5954
    下载: 导出CSV

    表  2  不同药量下各测点最大拉应变

    Table  2.   The maximum tensile strain at each measuring point under different explosive charges

    位置/10−6
    Q=50 gQ=75 gQ=100 gQ=125 gQ=150 gQ=175 gQ=200 g
    2-1环向20.723.425.439.1 50.9 50.9 67.6
    2-1轴向19.928.331.647.6 56.9 50.0 59.6
    2-3环向19.623.022.835.0 47.3 42.2 51.3
    2-3轴向21.528.033.961.5 96.3107.2130.0
    3-1环向20.323.725.941.2 51.7 49.2 65.6
    3-1轴向13.121.426.946.6 67.6 62.5 82.2
    3-1(45°) 5.4 6.3 5.814.7 26.7 30.2 37.6
    3-2环向15.925.529.569.4134.2194.1194.7
    3-2轴向18.224.324.441.6 65.5 76.0 87.9
    3-3环向28.833.728.243.6 70.7 98.7115.3
    3-3轴向19.029.133.861.4 97.0122.4135.8
    3-4环向17.722.223.642.6 99.0155.2164.8
    3-4轴向18.925.629.751.3 82.1 88.1102.7
    下载: 导出CSV

    表  3  不同药量下各测点最大压应变

    Table  3.   The maximum compressive strain at each measuring point under different explosive charges

    位置/10−6
    Q=50 gQ=75 gQ=100 gQ=125 gQ=150 gQ=175 gQ=200 g
    2-1环向−20.6−24.4−26.7−67.3−127.8−140.6−181.3
    2-1轴向−19.0−24.2−26.8−49.7 −61.1 −47.0 −57.9
    2-3环向−18.4−29.5−40.5−87.5−149.7−174.3−213.5
    2-3轴向−29.1−38.4−42.6−68.4 −92.3 −78.0−103.5
    3-1环向−19.9−25.6−28.2−53.1−102.3−119.9−147.0
    3-1轴向−23.0−30.8−35.0−67.3 −95.2 −84.5−110.1
    3-1(45°) −7.3 −6.0 −6.6−13.8 −25.0 −34.7 −37.0
    3-2环向−10.5−16.3−19.2−41.3 −88.3−110.4−134.6
    3-2轴向−23.9−36.9−41.1−75.6−104.2−122.3−121.7
    3-3环向−22.6−31.5−37.3−95.6−199.1−289.0−309.1
    3-3轴向−27.5−40.6−44.0−79.6−107.6−105.8−115.7
    3-4环向−18.4−27.5−31.6−50.6 −69.5 −54.8 −65.2
    3-4轴向−30.1−41.0−43.0−84.0−121.0−114.3−138.6
    下载: 导出CSV

    表  4  不同药量下PE管的PPV和主频

    Table  4.   The PPVs and main frequencies of the PE pipe under different explosive charges

    Q/gX方向Y方向Z方向合成PPV/(cm·s−1)
    PPV/(cm·s−1)主频/HzPPV/(cm·s−1)主频/HzPPV/(cm·s−1)主频/Hz
    501.1426.310.4325.841.3227.461.39
    751.2022.860.5524.691.2925.481.68
    1001.0525.161.1921.621.5624.1 1.91
    1251.6811.9 1.6817.242.5620.9 3.00
    1502.92 9.222.1724.603.9118.2 4.41
    1753.53 9.242.1821.984.0417.024.63
    2004.43 9.592.8021.984.9216.805.49
    下载: 导出CSV

    表  5  不同药量下地表的PPV和主频

    Table  5.   The PPVs and main frequencies of the ground under different explosive charges

    Q/gX方向Y方向Z方向合成PPV/(cm·s−1)
    PPV/(cm·s−1)主频/HzPPV/(cm·s−1)主频/HzPPV/(cm·s−1)主频/Hz
    502.1712.3 0.8930.47 3.3025.76 3.57
    752.3810.931.0331.75 3.6224.80 3.81
    1003.0210.441.1825.64 3.8723.26 3.97
    1255.62 8.451.3415.23 6.9819.24 7.20
    1509.29 7.831.30 8.30 9.4416.26 9.72
    1759.30 6.632.19 9.11 9.3514.5510.70
    2009.98 6.732.62 8.9111.7314.4411.78
    下载: 导出CSV

    表  6  已有公式计算值和实测数据

    Table  6.   Deteced data and calculated values by existing formulas

    药量/
    g
    比例距离/
    (m·kg−1/3)
    实测值式(2)式(3)式(1)
    εcir/10−6εlong/10−6εcir/10−6εlong/10−6εlong/10−6
    5010.18 28.8 27.5 29.224.5 32.5
    100 8.08 37.3 44.0 56.945.2 36.1
    150 7.06199.1107.6 83.864.0 88.3
    200 6.41309.1115.7110.281.3107.1
    下载: 导出CSV
  • [1] DOWDING C H. Blast vibration monitoring and control[M]. New Jersey: Prentice-Hall, 1985: 167−171.
    [2] ESPARZA E D, WESTINE P S, WENZEL A B. Pipeline response to buried explosive detonations: Vol. 2: technical report[R]. Arlington, USA: American Gas Association, 1981.
    [3] SISKIND D E, STAGG M S, WIEGAND J E, et al. Surface mine blasting near pressurized transmission pipelines: RI 9523 [R]. Minneapolis, MN: US Department of the Interior Bureau of Mines, 1994.
    [4] KOURETZIS G P, BOUCKOVALAS G D, GANTES C J. Analytical calculation of blast-induced strains to buried pipelines [J]. International Journal of Impact Engineering, 2007, 34(10): 1683–1704. doi: 10.1016/j.ijimpeng.2006.08.008
    [5] 热塑性塑料管材拉伸性能测定: GB/T 8804-2003 [S].
    [6] 王峥辉. 下蜀黄土超声波波速与物理力学性质试验研究[D]. 南京: 河海大学, 2007: 57-58. doi: 10.7666/d.y1128172.
    [7] 温婷, 徐丽丽, 王青, 等. 混凝土表面应变片防水性能的试验研究 [J]. 中国科技信息, 2014(8): 107–110 doi: 10.3969/j.issn.1001-8972.2014.08.035

    WEN Ting, XU Lili, WANG Qing, et al. Experimental study on waterproof performance of concrete surface stain-gages [J]. China Science and Technology Information, 2014(8): 107–110 doi: 10.3969/j.issn.1001-8972.2014.08.035
    [8] 李晓娟, 李全禄, 谢妙霞, 等. 国内外压电陶瓷的新进展及新应用 [J]. 硅酸盐通报, 2006, 25(4): 101–107 doi: 10.3969/j.issn.1001-1625.2006.04.024

    LI Xiaojuan, LI Quanlu, XIE Miaoxia, et al. New headways and new applications of piezoelectric at home and abroad [J]. Bulletin of the Chinese Ceramic Society, 2006, 25(4): 101–107 doi: 10.3969/j.issn.1001-1625.2006.04.024
    [9] 穆朝民, 任辉启, 李永池, 等. 变埋深条件下饱和土爆炸能量耦合系数的试验研究 [J]. 岩土力学, 2010, 31(5): 1574–1578 doi: 10.3969/j.issn.1000-7598.2010.05.039

    MU Chaomin, REN Qihui, LI Yongchi, et al. Experiment study of explosion energy coupling coefficient with different burial depths in saturated soils [J]. Rock and Soil Mechanics, 2010, 31(5): 1574–1578 doi: 10.3969/j.issn.1000-7598.2010.05.039
    [10] 库特乌佐夫. 爆破工程师手册[M]. 刘清泉, 译. 北京: 煤炭工业出版社, 1992: 137−138.
    [11] DATTA T K. Seismic response of buried pipelines: a state-of-the-art review [J]. Nuclear Engineering and Design, 1999, 192(2/3): 271–284. doi: 10.1016/S0029-5493(99)00113-2
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  5103
  • HTML全文浏览量:  1941
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-11
  • 修回日期:  2018-01-10
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回