Numerical simulation on spallation and fragmentation of tin under explosive loading
-
摘要: 对爆轰加载下低熔点金属锡的层裂破碎问题开展了数值模拟。在利用实验数据对所采用数值方法和材料模型开展对比验证的基础上,通过对样品内部物理量时间及空间分布演化对比分析,剖析了冲击加-卸载中样品内部应力波与材料相互作用过程。此外,通过对比分析不同厚度锡样品在爆轰加载下的动态行为特征,进一步认识了自由面反射稀疏波、边侧稀疏波和入射稀疏波共同作用下层裂破碎演化机制。结果表明,当样品较薄时,层裂破碎行为由反射稀疏波主导;随着样品厚度的增大,反射稀疏波主导区缩小,入射稀疏波和边侧稀疏波主导区逐渐增大。Abstract: Spallation and fragmentation of tin, a low-melting point metal under explosive loading were numerically simulated. The numerical method and material model used were validated by the experimental results. Thereby, the temporal evolution and spatial distribution of the physical quantities in the Sn specimens were compared to explore the interaction between the stress waves and the material in the specimen under impact loading and unloading. Furthermore, the dynamic behaviors of the specimens with various thicknesses under explosive loading were in-depth analyzed to further understand the evolution mechanism of the spallation and fragmentation under the combination action of the reflective rarefaction wave from the free surface, the lateral rarefaction wave and the incident rarefaction wave. The results show that for the thin specimen, the early spallation and fragmentation are dominated by the reflective rarefaction wave. With increasing the thickness of the specimen, the region dominated by the reflective rarefaction wave becomes smaller, and meanwhile the region dominated by the incident rarefaction wave and the lateral rarefaction wave becomes larger.
-
Key words:
- explosive loading /
- tin /
- spallation and fragmentation /
- stress wave /
- evolution mechanism
-
表 1 Sn和Al的SG本构参数
Table 1. The material parameters in SG constitutive relation for Sn and Al
材料 G0/GPa Y0/GPa Ymax/GPa β η G′p G′T/(MPa⋅K−1) Y′p Tm0/K Sn 17.9 0.16 0.22 2 000 0.06 1.55 −37.95 0.013 9 656.6 Al 2.86 0.26 0.76 310 0.185 1.86 −17.62 0.016 9 1 220 表 2 Sn和Al的Mie-Grüneisen状态方程参数
Table 2. The material parameters in Mie-Grüneisen equation of state for Sn and Al
材料 ρ0/(g⋅cm−3) c0/(m⋅s−1) S1 γ Sn 7.287 2 590 1.49 2.27 Al 2.785 5 328 1.338 2.0 表 3 高能炸药JWL状态方程参数
Table 3. The parameters in JWL equation of state for high explosive
ρe/(g⋅cm−3) D/(m⋅s−1) pe/GPa A/GPa B/GPa R1 R2 ω ee/(GJ⋅m−3) 1.85 8 710 34.4 824.8 7.06 4.3 0.79 0.28 10.2 -
[1] ANDRIOT P, CHAPRON P, LAMBERT V, et al. Influence of melting on shocked free surface behaviour using Doppler laser interferometry and X-ray densitometry [C] // AIP Conference Proceedings: Shock Waves in Condensed Matter, 1983: 277−280. DOI: 10.1016/b978-0-444-86904-3.50065-8. [2] ZHIEMBETOV A K, MIKHAYLOV A L, SMIRNOV G S. Experimental study of explosive fragmentation of metals melts [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2001: 547−552. DOI: 10.1063/1.1483598. [3] HOLTKAMP D B, CLARK D A, FERME N, et al. A survey of high explosive-induced damage and spall in selected metals using proton radiography [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2004: 477−482. DOI: 10.1063/1.1780281. [4] ANTOUN T, SEAMAN L, CURRAN D R, et al. Spall fracture [M]. New York: Springer, 2002: 1−34. [5] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1914, 213: 437–456. DOI: 10.1098/rsta.1914.0010. [6] SIGNOR L, RESSEGUIER T D, ROY G, et al. Fragment-size prediction during dynamic fragmentation of shock-melted tin: recovery experiments and modeling issues [C] // AIP Conference Proceedings: Shock Compression of Condensed Matter, 2007: 593−596. DOI: 10.1063/1.2833159. [7] RESSEGUIER T D, SIGNOR L, DRAGON A, et al. Dynamic fragmentation of laser shock-melted tin: experiment and modelling [J]. International Journal of Fracture, 2010, 163(1/2): 109–119. [8] 陈永涛, 任国武, 汤铁钢, 等. 爆轰加载下金属样品的熔化破碎现象诊断 [J]. 物理学报, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202CHEN Yongtao, HONG Renwu, TANG Tiegang, et al. Experimental diagnostic of melting fragments under explosive loading [J]. Acta Physica Sinica, 2013, 62(11): 116202 doi: 10.7498/aps.62.116202 [9] 陈永涛, 洪仁楷, 陈浩玉, 等. 爆轰加载下金属材料的微层裂现象 [J]. 爆炸与冲击, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07CHEN Yongtao, HONG Renkai, CHEN Haoyu, et al. Micro-spalling of metal under explosive loading [J]. Explosion and Shock Waves, 2017, 37(1): 61–67. DOI: 10.11883/1001-1455(2017)01-0061-07 [10] CHEN Y, HONG R, CHEN H, et al. An improved Asay window technique for investigating the micro-spall of an explosively-driven tin [J]. Review of Scientific Instruments, 2017, 88(1): 013904. doi: 10.1063/1.4973699 [11] 张林, 李英华, 张祖根, 等. 用于诊断材料微层裂的Asay窗技术 [J]. 爆炸与冲击, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07ZHANG Lin, LI Yinghua, ZHANG Zugen, et al. Asay window for probing the microspall of materials [J]. Explosion and Shock Waves, 2017, 37(4): 692–698. DOI: 10.11883/1001-1455(2017)04-0692-07 [12] SOULARD L. Molecular dynamics study of the micro-spallation [J]. The European Physical Journal D, 2008, 50(3): 241–251. DOI: 10.1140/epjd/e2008-00212-2. [13] XIANG M, HU H, CHEN J, et al. Molecular dynamics simulations of micro-spallation of single crystal lead [J]. Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055005. doi: 10.1088/0965-0393/21/5/055005 [14] XIANG M, HU H, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388 [15] 曹结东, 刘文韬, 张树道. 爆轰驱动锡微层裂的数值模拟研究 [C] // 第十四届全国激波与激波管学术会, 2010: 153−157. [16] 张锁春. 光滑质点流体动力学(SPH)方法: 综述 [J]. 计算物理, 1996, 13(4): 385–397ZHANG Suochun. Smoothedparticle hydrodynamics (SPH) method: a review [J]. Chinese Journal of Computation Physics, 1996, 13(4): 385–397 [17] 刘谋斌, 宗智, 常建忠. 光滑粒子动力学方法的发展与应用 [J]. 力学进展, 2011, 41(2): 217–234LIU Moubin, ZONG zhi, CHANG Jianzhong. Developements and applications of smoothed particle hydrodynamics [J]. Advances in Mechanics, 2011, 41(2): 217–234 [18] STEINBERG D J, COCHRAN S G, Guinan M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799 [19] GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4 期刊类型引用(34)
1. 吴鹏,陈利,王静. 多向嵌入式圆形蜂窝面外动态冲击响应. 聊城大学学报(自然科学版). 2025(02): 224-231 . 百度学术
2. 张宝庆,蒋森. 旋转型负泊松比星形蜂窝结构能量吸收特性研究. 固体力学学报. 2025(01): 129-148 . 百度学术
3. 陈碧敏,黄小娣. 梯度蜂窝力学行为及其多目标优化设计. 机械强度. 2024(01): 107-114 . 百度学术
4. 陈思远,陈涛,王禹,杨金水,李爽. 三维增强型双箭头负泊松比结构抗冲击性能研究. 舰船科学技术. 2024(06): 31-37 . 百度学术
5. 李锐,李成兵,李仁富,胡丽萍,张吉涛,叶强. 内嵌负泊松比型耦合蜂窝结构的共面冲击响应. 塑性工程学报. 2024(05): 224-232 . 百度学术
6. 石南南,张伟晨,李振宝,王利辉,刘晗,张雷,夏阳. 泡沫填充四韧带反手性结构和内凹结构的面内压缩性能. 复合材料学报. 2024(06): 2935-2946 . 百度学术
7. 李娜,刘述尊,张新春,张英杰,齐文睿. 新型星-菱形负泊松比蜂窝结构的动态力学特性. 复合材料学报. 2024(09): 4956-4967 . 百度学术
8. 朱春晓,徐双喜,陈威,李晓彬,乐京霞. 负泊松比曲边内凹同心蜂窝结构冲击吸能特性研究. 武汉理工大学学报(交通科学与工程版). 2023(01): 90-95 . 百度学术
9. 亓昌,丁晨,刘海涛,江峰,陈上,杨姝. 弧形双箭头蜂窝面内压缩性能试验与仿真. 华南理工大学学报(自然科学版). 2023(01): 61-68 . 百度学术
10. 王义平,李凤莲,吕梅. 波纹-负泊松比蜂窝混合芯夹层板的自由振动. 科学技术与工程. 2023(14): 5963-5969 . 百度学术
11. 程乾,尹剑飞,温激鸿,郁殿龙. 极小曲面力学超材料抗冲吸能特性分析. 动力学与控制学报. 2023(07): 43-50 . 百度学术
12. 李成兵,张吉涛,叶强,李锐,李仁富,杨兰英. 复合蜂窝结构的冲击响应特性. 塑性工程学报. 2023(09): 195-203 . 百度学术
13. 罗伟洪,何婉青,吴文军,李世强,王志勇. 不同速度下负泊松比弧形结构的变形行为. 爆炸与冲击. 2023(11): 75-87 . 本站查看
14. 张翼,余胜,刘加一,何红萱,张涛. 负泊松比内凹蜂窝圆柱壳水下抗冲击响应研究. 舰船科学技术. 2023(21): 1-7 . 百度学术
15. 赵颖,王凯锋,施劲余,桑叶,李云伍,陈宇,殷举伞. 微元胞缺失下三星型微结构面内动态性能分析. 振动与冲击. 2022(10): 115-123+185 . 百度学术
16. 何斌策,张君华,孙莹. 曲壁蜂窝夹层板的振动特性研究. 固体力学学报. 2022(03): 296-306 . 百度学术
17. 刘崎崎,胡俊. 星型倾斜壁节点蜂窝结构的动态力学特性. 湖北理工学院学报. 2022(04): 44-49 . 百度学术
18. 卫禹辰,黄春阳,袁梦琦. 高应变率下三种典型蜂窝结构力学特性及参数优化研究. 中国科学基金. 2022(03): 530-535 . 百度学术
19. 刘彦佐,李振羽,杨金水. 碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能. 复合材料学报. 2022(08): 4117-4128 . 百度学术
20. 刘海涛,刘佳岳,张德权. 空竹型负泊松比蜂窝结构的面内冲击性能研究. 振动与冲击. 2022(17): 262-267 . 百度学术
21. 胡锦顺,林永水,陈威,李晓彬,吴卫国. 改进星形蜂窝结构面内动力学响应及能量吸收特性研究. 振动与冲击. 2022(23): 119-128 . 百度学术
22. 陈旺龙,胡俊. 冲击荷载下类蜂窝结构的动态压缩特性研究. 湖北理工学院学报. 2021(02): 48-52 . 百度学术
23. 赵著杰,侯海量,李典. 填充多胞元抗冲击防护结构动力学特性及防护性能研究进展. 中国舰船研究. 2021(03): 96-111 . 百度学术
24. 白临奇,史小全,刘宏瑞,孙雅洲. 冲击载荷下箭头型负泊松比蜂窝结构动态吸能性能研究. 振动与冲击. 2021(11): 70-77 . 百度学术
25. 朱建生,武天宇. 火炮发射载荷下负泊松比蜂窝结构抗冲击性能研究. 兵器装备工程学报. 2021(10): 97-102 . 百度学术
26. 闫昭臣,张君华,刘彦琦. 不同泊松比蜂窝夹层板的振动实验分析. 应用力学学报. 2021(06): 2256-2261 . 百度学术
27. 刘海涛,安明冉,王梁,乔国朝,任富光. 双向角度梯度内凹蜂窝结构的面内倾斜冲击性能研究. 振动与冲击. 2021(23): 159-165 . 百度学术
28. 李志强,靳朝晖,张素风,孙涛. 正棱台缓冲垫结构参数对静态缓冲性能的影响. 包装工程. 2020(07): 141-146 . 百度学术
29. 杨欣,范晓文,许述财,黄晗,霍鹏. 仿虾螯结构薄壁管设计及耐撞性分析. 爆炸与冲击. 2020(04): 62-72 . 本站查看
30. 张新春,沈振峰,吴鹤翔,白江畔,曹应平. 多段填充复合蜂窝结构的动态响应特性研究. 湖南大学学报(自然科学版). 2020(04): 67-75 . 百度学术
31. 房泽臣,冯杰,陈川琳,李忠新,吴志林. 蛛丝β-片状纳米晶体启发的蜂窝结构动态力学特性研究. 振动与冲击. 2020(16): 46-54 . 百度学术
32. 沈振峰,张新春,白江畔,吴鹤翔. 负泊松比内凹环形蜂窝结构的冲击响应特性研究. 振动与冲击. 2020(18): 89-95+117 . 百度学术
33. 孙晓旺,陶晓晓,王显会,李进军,王利辉. 负泊松比蜂窝材料抗爆炸特性及优化设计研究. 爆炸与冲击. 2020(09): 66-76 . 本站查看
34. 宋晓辉,李梦瑶,周晓杰,刘阳,段玉莹,马衍轩. 钢筋混凝土的负泊松比设计及其常规力学性能研究. 青岛理工大学学报. 2020(05): 1-8 . 百度学术
其他类型引用(45)
-