单轴双向加载分离式霍普金森压杆的数据处理方法

聂海亮 石霄鹏 陈春杨 李玉龙

聂海亮, 石霄鹏, 陈春杨, 李玉龙. 单轴双向加载分离式霍普金森压杆的数据处理方法[J]. 爆炸与冲击, 2018, 38(3): 517-524. doi: 10.11883/bzycj-2017-0361
引用本文: 聂海亮, 石霄鹏, 陈春杨, 李玉龙. 单轴双向加载分离式霍普金森压杆的数据处理方法[J]. 爆炸与冲击, 2018, 38(3): 517-524. doi: 10.11883/bzycj-2017-0361
NIE Hailiang, SHI Xiaopeng, CHEN Chunyang, LI Yulong. Data processing method for bidirectional-load split Hopkinson compression bar[J]. Explosion And Shock Waves, 2018, 38(3): 517-524. doi: 10.11883/bzycj-2017-0361
Citation: NIE Hailiang, SHI Xiaopeng, CHEN Chunyang, LI Yulong. Data processing method for bidirectional-load split Hopkinson compression bar[J]. Explosion And Shock Waves, 2018, 38(3): 517-524. doi: 10.11883/bzycj-2017-0361

单轴双向加载分离式霍普金森压杆的数据处理方法

doi: 10.11883/bzycj-2017-0361
基金项目: 

国家自然科学基金项目 11527803

上海市科学技术委员会科研计划项目 14DJ1400300

详细信息
    作者简介:

    聂海亮(1988-), 男, 博士

    通讯作者:

    李玉龙, liyulong@nwpu.edu.cn

  • 中图分类号: O347.1

Data processing method for bidirectional-load split Hopkinson compression bar

  • 摘要: 本文中提出单轴双向加载分离式霍普金森压杆(bidirectional-load split Hopkinson compression bar,BSHCB),即在传统的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)的基础上增加另一个对称的入射波,两边的入射波同时且对称地对试样进行动态加载。根据一维应力波传播理论,推导出单轴双向加载分离式霍普金森杆的数据处理公式。通过数值模拟分析发现,所推导的数据处理公式可以用于计算单轴双向加载实验中试样的工程应力、工程应变和工程应变率。此外,单轴双向对称加载不仅可缩短试样内部应力均匀化的过程,而且可以提高试样应变率。
  • 图  1  BSHCB示意图

    Figure  1.  Sketch map of the bidirectional-load split Hopkinson compression bar

    图  2  单轴双向加载实验中应力波的传播示意图

    Figure  2.  Schematic diagram of wave propagationin BSHCB test

    图  3  试样内部单元分组和编号以及试样内部各组单元的平均应力-应变曲线

    Figure  3.  Grouping and serial numbers of specimen elements, and average stress-strain curve of each element group

    图  4  300 MPa VS 300 MPa BSHCB模拟中所采集的应力波信号及数据处理所用的波形

    Figure  4.  Stress waves and data processing waves used in BSHCB simulation of 300 MPa VS 300 MPa

    图  5  300MPa VS 300MPa BSHCB的工程应力-工程应变曲线的计算结果与模拟结果的比较

    Figure  5.  Comparison of calculated and simulated stress-strain curves in BSHCB simulation of 300 MPa VS 300 MPa

    图  6  BSHCB和传统SHPB实验中试样内部的应力均匀性比较

    Figure  6.  Comparison of stress equilibrium in specimens of BSHCB and SHPB tests

    图  7  BSHCB实验中的恒应变率加载模拟结果

    Figure  7.  Simulation results of constant strain-rate loading in BSHCB test

    图  8  单向加载与双向加载结果对比

    Figure  8.  Comparison between the results of traditional and bidirectional-load methods

    图  9  不对称加载时2024铝动态力学性能的计算结果

    Figure  9.  Calculated results of 2024 aluminum alloy dynamic properties when the loadings are asymmetrical

    图  10  实际实验中测到的2个入射波形

    Figure  10.  Two incident stress waves recorded in real experiment

  • [1] HOPKINSON B. A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets[J]. Philosophical Transactions of the Royal Society of London, 1914, 213(612):437-456. DOI: 10.1098/rspa.1914.0008.
    [2] GARY G, MOHR D. Modified Kolsky formulas for an increased measurement duration of SHPB systems[J]. Experimental Mechanics, 2013, 53(4):713-717. DOI: 10.1007/s11340-012-9664-7.
    [3] NIE X, PRABHU R, CHEN WW, et al. A Kolsky torsion bar technique for characterization of dynamic shear response of soft materials[J]. Experimental Mechanics, 2011, 51(9):1527-1534. DOI: 10.1007/s11340-011-9481-4.
    [4] LIM J, CHEN W W, ZHENG J Q. Dynamic small strain measurements of Kevlar 129 single fibers with a miniaturized tension Kolsky bar[J]. Polymer Testing, 2010, 29(6):701-705. DOI: 10.1016/j.polymertesting.2010.05.012.
    [5] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceeding of the Physical Society, 1949, 62(11):676-700. DOI: 10.1088/0370-1301/62/11/302.
    [6] SONG B, GE Y, CHEN W W, et al. Radial inertia effects in Kolsky bar testing of extra-soft specimens[J]. Experimental Mechanics, 2007, 47(5):659-670. DOI: 10.1016/j.polymertesting.2010.05.012.
    [7] PARRY D J, DIXON P R, HODSON S, et al. Stress equilibrium effects within Hopkinson bar specimens[J]. Journal De Physique IV, 1994, 4(C8):107-112.DOI: 10.1051/jp4:1994816.
    [8] WANG L L, LABIBES K, AZARI Z, et al. Generalization of split Hopkinson bar technique to use viscoelastic bars[J]. International Journal of Impact Engineering, 1994, 15(5):669-686. DOI: 10.1016/0734-743X(94)90166-I.
    [9] HOU B, ONO A, ABDENNADHER S, et al. IMPact behavior of honeycombs under combined shear-compression. Part Ⅰ:Experiments[J]. International Journal of Solids and Structures, 2011, 48(5):687-697. DOI: 10.1016/j.ijsolstr.2010.11.005.
    [10] 崔云霄, 卢芳云, 林玉亮, 等.一种新的高应变率复合压剪实验技术[J].实验力学, 2006, 21(5):584-590.DOI: 10.3969/j.issn.1001-4888.2006.05.007.

    CUI Yunxiao, LU Fangyun, LIN Yuliang, et al. A new combined compression-shear loading technique at high strain rates[J]. Journal of Experimental Mechanics, 2006, 21(5):584-590. DOI: 10.3969/j.issn.1001-4888.2006.05.007.
    [11] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48. DOI: 10.1016/0013-7944(85)90052-9.
    [12] 李玉龙, 聂海亮, 汤忠斌, 等. 基于电磁力加载的分离式霍普金森压杆实验装置: CN201410161610. X[P]. 2014-07-09.
    [13] 李玉龙, 聂海亮, 汤忠斌, 等. 一种基于电磁力的拉伸及压缩应力波发生器及实验方法: 201410171963. 8[P]. 2014-08-20.
    [14] 李玉龙, 聂海亮, 汤忠斌, 等. 电磁式应力波发生器的主线圈及充电/放电的方法: 201510051071. 9[P]. 2015-06-03.
  • 加载中
图(10)
计量
  • 文章访问数:  5474
  • HTML全文浏览量:  1361
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-09
  • 修回日期:  2017-12-18
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回