地应力水平对深埋隧洞爆破振动频谱结构的影响

杨润强 严鹏 王高辉 卢文波 陈明

杨润强, 严鹏, 王高辉, 卢文波, 陈明. 地应力水平对深埋隧洞爆破振动频谱结构的影响[J]. 爆炸与冲击, 2019, 39(5): 055201. doi: 10.11883/bzycj-2017-0366
引用本文: 杨润强, 严鹏, 王高辉, 卢文波, 陈明. 地应力水平对深埋隧洞爆破振动频谱结构的影响[J]. 爆炸与冲击, 2019, 39(5): 055201. doi: 10.11883/bzycj-2017-0366
YANG Runqiang, YAN Peng, WANG Gaohui, LU Wenbo, CHEN Ming. Effect of in-situ stress level on frequency spectrumof blasting vibration in a deep-buried tunnel[J]. Explosion And Shock Waves, 2019, 39(5): 055201. doi: 10.11883/bzycj-2017-0366
Citation: YANG Runqiang, YAN Peng, WANG Gaohui, LU Wenbo, CHEN Ming. Effect of in-situ stress level on frequency spectrumof blasting vibration in a deep-buried tunnel[J]. Explosion And Shock Waves, 2019, 39(5): 055201. doi: 10.11883/bzycj-2017-0366

地应力水平对深埋隧洞爆破振动频谱结构的影响

doi: 10.11883/bzycj-2017-0366
基金项目: 国家重点研发计划(2016YFC0401802);国家自然科学基金(51779192);武汉大学自主科研B类(2042017GF0073)
详细信息
    作者简介:

    杨润强(1993- ),男,硕士研究生,yangrq@whu.edu.cn

    通讯作者:

    严 鹏(1981- ),男,博士,教授,pyanwhu@whu.edu.cn

  • 中图分类号: O382; TU45

Effect of in-situ stress level on frequency spectrumof blasting vibration in a deep-buried tunnel

  • 摘要: 爆破振动的频谱特性对隧洞安全施工具有重要意义。采用动力有限元方法,分析了不同地应力水平条件下围岩爆破振动频率特征,通过对实测爆破振动信号的时域和频域联合分析,研究了不同频带上的振动能量分布。结果表明,爆破振动的主频及各个振动能量优势频带都有随地应力水平升高而降低的趋势,伴随爆破破岩过程而发生的地应力瞬态卸载动力效应是产生这一现象的主要原因。地应力水平越高,爆破振动信号中20~100 Hz的低频振动能量比重越大。当爆区的地应力为20 MPa时,20~100 Hz频带内的振动能量可达到总振动能量的35%左右;当爆区的地应力为30~50 MPa时,20~100 Hz频带内的振动能量可达到总振动能量的50%以上。除地应力水平外,应力卸载速率及岩体的力学特性也对爆破振动主频具有显著影响,卸载速率越高,低频振动能量比重越大。卸载速率取决于掏槽爆破方式,直孔掏槽导致岩体应变能释放速率最高。岩体弹性模量越大,爆破振动的主频越高。
  • 图  1  深埋隧洞爆破开挖诱发振动的力学模型

    Figure  1.  A mechanical model of blasting-excavation-induced vibration in a deep-buried tunnel

    图  2  有限元计算模型

    Figure  2.  The finite element model used in calculation

    图  3  爆炸荷载曲线

    Figure  3.  Blasting load curve

    图  4  不同地应力水平卸载曲线

    Figure  4.  Unloading curves under different stress levels

    图  5  不同地应力卸载速率卸载曲线

    Figure  5.  Unloading curves at different unloading rates

    图  6  不同地应力水平下围岩的振动响应

    Figure  6.  Vibration responses of surrounding rocks under different in-situ stress levels

    图  7  不同卸载速率下围岩的振动响应

    Figure  7.  Vibration responses of surrounding rocks at different unloading rates

    图  8  不同岩性围岩的振动响应

    Figure  8.  Vibration response of surrounding rocks with different lithologies

    图  9  瀑布沟尾水洞

    Figure  9.  Pu-Bu-Gou tailrace tunnel

    图  10  锦屏地下实验室

    Figure  10.  The underground laboratory in Jin-Ping

    图  11  瀑布沟尾水洞实测爆破振动功率谱

    Figure  11.  Measured blasting vibration power spectrums of Pu-Bu-Gou tailrace tunnel

    图  12  锦屏地下实验室实测爆破振动功率谱

    Figure  12.  Measured blasting vibration power spectrums of the underground laboratory in Jin-Ping

    图  13  不同地应力水平下实测爆破振动时-能密度曲线(MS1)

    Figure  13.  Measured blasting time energy-density curve under different stress levels (MS1)

    表  1  工程基本资料

    Table  1.   Engineering basic information

    工程名称 断面尺寸/
    (宽×高)
    地应力/
    MPa
    岩性 围岩类别 抗压强度/
    MPa
    峰值振速/
    (cm·s−1
    主频/
    Hz
    最大单响药量/
    kg
    循环进尺/
    m
    瀑布沟 8 m×8 m 20 花岗岩 Ⅱ、Ⅲ 123 0.62 116 24 3.0
    锦屏地下实验室 7 m×7 m 50 大理岩 Ⅱ、Ⅲ 120 3.70 100 60 3.5
    下载: 导出CSV

    表  2  实测爆破振动能量在各频带的分布比例

    Table  2.   The measured blasting vibration energy distribution ratio in each frequency band

    工程名称 地应力/
    MPa
    各频带能量百分比/%
    5~20 Hz >20~60 Hz >60~100 Hz >100~160 Hz >160~220 Hz >220~300 Hz >300 Hz
    瀑布沟 20 0.78 9.73 16.07 28.81 19.34 18.46 6.81
    瀑布沟(MS1) 20 3.56 32.87 8.49 47.82 5.04 1.30 0.92
    锦屏地下实验室 50 2.32 16.84 26.84 9.11 22.55 8.15 14.19
    锦地下实验室(MS1) 50 5.73 28.44 23.40 7.86 23.83 1.96 8.78
    下载: 导出CSV
  • [1] SINGH P K, ROY M P. Damage to surface structures due to blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 949–961. DOI: 10.1016/j.ijrmms.2010.06.010.
    [2] LU W B, LUO Y, CHEN M, et al. An introduction to Chinese safety regulations for blasting vibration [J]. Environmental Earth Sciences, 2012, 67(7): 1951–1959. DOI: 10.1007/s12665-012-1636-9.
    [3] 张奇, 白春华, 刘庆明. 爆炸地震波频谱特性研究 [J]. 北京理工大学学报, 1999, 19(3): 306–308. DOI: 10.15918/j.tbit1001-0645.1999.03.009.

    ZHANG Qi, BAI Chunhua, LIU Qingming. Frequency spectrum characteristics of explosion earthquake wave [J]. Journal of Beijing Institute of Technology, 1999, 19(3): 306–308. DOI: 10.15918/j.tbit1001-0645.1999.03.009.
    [4] TRIVINO L F, MOHANTY B, MILKEREIT B. Seismic waveforms from explosive sources located in boreholes and initiated in different directions [J]. Journal of Applied Geophysics, 2012, 87(1): 81–93. DOI: 10.1016/j.jappgeo.2012.09.004.
    [5] 周俊汝, 卢文波, 张乐, 等. 爆破地震波传播过程的振动频率衰减规律研究 [J]. 岩石力学与工程学报, 2014, 33(11): 2171–2178. DOI: 10.13722/j.cnki.jrme.2014.11.002.

    ZHOU Junru, LU Wenbo, ZHANG Le, et al. Attenuation of vibration frequency during propagation of blasting seismic wave [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11): 2171–2178. DOI: 10.13722/j.cnki.jrme.2014.11.002.
    [6] 凌同华, 李夕兵. 地下工程爆破振动信号能量分布特征的小波包分析 [J]. 爆炸与冲击, 2004, 24(1): 63–68.

    LING Tonghua, LI Xibing. The features of energy distribution for blast vibration signals in underground engineering by wavelet packet analysis [J]. Explosion and Shock Waves, 2004, 24(1): 63–68.
    [7] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究 [J]. 岩石力学与工程学报, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.

    HE Manchao, XIE Heping, PENG Suping, et a1. Study on rock mechanics in deep mining engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803–2813. DOI: 10.3321/j.issn:1000-6915.2005.16.001.
    [8] 严鹏, 赵振国, 卢文波, 等. 深部岩体地应力瞬态卸载诱发振动效应的影响因素 [J]. 岩土力学, 2016, 37(2): 545–553. DOI: 10.16285/j.rsm.2016.02.028.

    YAN Peng, ZHAO Zhenguo, LU Wenbo, et al. Factors influencing vibration effects induced by in-situ stress transient unloading of deep rock mass [J]. Rock and Soil Mechanics, 2016, 37(2): 545–553. DOI: 10.16285/j.rsm.2016.02.028.
    [9] 张志呈, 肖正学, 胡健, 等. 岩体爆震传播时应力场的波导效应试验研究 [J]. 化工矿物与加工, 2005, 34(7): 21–24. DOI: 10.3969/j.issn.1008-7524.2005.07.008.

    ZHANG Zhicheng, XIAO Zhengxue, HU Jian, et al. Experimental study on the wave transmission effect of the initial stress field as transmitting of quake wave from rock blasting [J]. Industrial Minerals and Processing, 2005, 34(7): 21–24. DOI: 10.3969/j.issn.1008-7524.2005.07.008.
    [10] 卢文波, 金李, 陈明, 等. 节理岩体爆破开挖过程的动态卸载松动机制研究 [J]. 岩石力学与工程学报, 2005, 24(增1): 4653–4657.

    LU Wenbo, JIN Li, CHEN Ming, et al. Study on the mechanism of jointed rock mass loosing induced by unloading of initial stress during rock blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(s1): 4653–4657.
    [11] CARTER J P, BOOKER J R. Sudden excavation of a long circular tunnel in elastic ground [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics, 1990, 27(2): 129–132. DOI: 10.1016/0148-9062(90)94861-M.
    [12] 卢文波, 陈明, 严鹏, 等. 高地应力条件下隧洞开挖诱发围岩振动特性研究 [J]. 岩石力学与工程学报, 2007, 26(增1): 3329–3334.

    LU Wenbo, CHEN Ming, YAN Peng, et al. Study on vibration characteristics of surrounding rock induced by tunnel excavation under high in-situ stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(s1): 3329–3334.
    [13] LU Wenbo, YAN Peng, ZHOU Chuangbing. Dynamic response induced by the sudden unloading of initial stress during rock excavation by blasting [C] // Proceedings of the 4th Asian Rock Mechanics Symposium. Singapore: World Scientific Publishing, 2006.
    [14] 张正宇, 张文煊, 吴新霞, 等.现代水利水电工程爆破[M]. 北京: 中国水利水电出版社, 2003.
    [15] 严鹏, 卢文波, 陈明, 等. 初始地应力场对钻爆开挖过程中围岩振动的影响研究 [J]. 岩石力学与工程学报, 2008, 27(5): 1036–1045. DOI: 10.3321/j.issn:1000-6915.2008.05.020.

    YAN Peng, LU Wenbo, CHEN Ming, et al. Study on impaction of initial geostress field on vibration of surrounding rock during excavation with drilling and blasting method [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(5): 1036–1045. DOI: 10.3321/j.issn:1000-6915.2008.05.020.
    [16] 杨润强, 严鹏, 卢文波, 等. 深部地层地应力水平与爆破振动频率特征的相关性 [J]. 工程爆破, 2016, 22(5): 50–56. DOI: 10.3969/j.issn.1006-7051.2016.05.011.

    YANG Runqiang, YAN Peng, LU Wenbo, et al. Effect of crustal stress level on frequency characteristics of blasting vibration [J]. Engineering Blasting, 2016, 22(5): 50–56. DOI: 10.3969/j.issn.1006-7051.2016.05.011.
    [17] 卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU Wenbo, ZHOU Chuangbing, CHEN Ming, et al. Research on transient characteristics of excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [18] 卢文波, 杨建华, 陈明, 等. 深埋隧洞岩体开挖瞬态卸荷机制及等效数值模拟 [J]. 岩石力学与工程学报, 2011, 30(6): 1089–1096.

    LU Wenbo, YANG Jianhua, CHEN Ming, et al. Mechanism and equivalent numerical simulation of transient release of excavation load for deep tunnel [J]. Chinese Journal of Geotechnical Engineering, 2011, 30(6): 1089–1096.
    [19] YANG Jianhua, LU Wenbo, CHEN Ming, et al. Microseism induced by transient release of in situ stress during deep rock mass excavation by blasting [J]. Rock Mechanics and Rock Engineering, 2013, 46(4): 859–875. DOI: 10.1007/s00603-012-0308-0.
    [20] LU Wenbo, YANG Jianhua, YAN Peng, et al. Dynamic response of rock mass induced by the transient release of in-situ stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 53(9): 129–141. DOI: 10.1016/j.ijrmms.2012.05.001.
    [21] 杨建华, 卢文波, 陈明, 等. 岩石爆破开挖诱发振动的等效模拟方法 [J]. 爆炸与冲击, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.

    YANG Jianhua, LU Wenbo, CHEN Ming, et al. An equivalent simulation method for blasting vibration of surrounding rock [J]. Explosion and Shock Waves, 2012, 32(2): 157–163. DOI: 10.11883/1001-1455(2012)02-0157-07.
    [22] LU Wenbo, YANG Jianhua, CHEN Ming, et al. An equivalent method for blasting vibration simulation [J]. Simulation Modelling Practice and Theory, 2011, 19(9): 2050–2062. DOI: 10.1016/j.simpat.2011.05.012.
    [23] HENRYCH J. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 90-93.
    [24] ESEN S, ONRDERRA I, BILGIN H A. Modelling the size of the crushed zone around a blasthole [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4): 485–495. DOI: 10.1016/S1365-1609(03)00018-2.
    [25] 李洪涛, 卢文波, 舒大强, 等. 基于功率谱的爆破地震能量分析方法 [J]. 爆炸与冲击, 2009, 29(5): 492–496. DOI: 10.11883/1001-1455(2009)05-0492-05.

    LI Hongtao, LU Wenbo, SHU Daqiang, et al. An energy analysis method for blast-induced seismic based on power spectrum [J]. Explosion and Shock Waves, 2009, 29(5): 492–496. DOI: 10.11883/1001-1455(2009)05-0492-05.
    [26] 中国生, 徐国元, 熊正明. 基于小波变换的爆破地震信号能量分析法的应用研究 [J]. 爆炸与冲击, 2006, 26(3): 222–227. DOI: 10.11883/1001-1455(2006)03-0222-06.

    ZHONG Guosheng, XU Guoyuan, XIONG Zhengming. Application research of the energy analysis method for blasting seismic signals based on wavelet transform [J]. Explosion and Shock Waves, 2006, 26(3): 222–227. DOI: 10.11883/1001-1455(2006)03-0222-06.
    [27] 晏俊伟, 龙源, 方向, 等. 基于小波变换的爆破振动信号能量分布特征分析 [J]. 爆炸与冲击, 2007, 27(5): 405–410. DOI: 10.11883/1001-1455(2007)05-405-06.

    YAN Junwei, LONG Yuan, FANG Xiang, et al. Analysis on features of energy distribution for blasting seismic wave based on wavelet transform [J]. Explosion and Shock Waves, 2007, 27(5): 405–410. DOI: 10.11883/1001-1455(2007)05-405-06.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  4864
  • HTML全文浏览量:  1782
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-13
  • 修回日期:  2018-01-18
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回