混凝土靶侵彻过程中空腔膨胀响应分区

牛振坤 陈小伟 邓勇军 姚勇

牛振坤, 陈小伟, 邓勇军, 姚勇. 混凝土靶侵彻过程中空腔膨胀响应分区[J]. 爆炸与冲击, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368
引用本文: 牛振坤, 陈小伟, 邓勇军, 姚勇. 混凝土靶侵彻过程中空腔膨胀响应分区[J]. 爆炸与冲击, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368
NIU Zhenkun, CHEN Xiaowei, DENG Yongjun, YAO Yong. Cavity expansion response of concrete targets under penetration[J]. Explosion And Shock Waves, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368
Citation: NIU Zhenkun, CHEN Xiaowei, DENG Yongjun, YAO Yong. Cavity expansion response of concrete targets under penetration[J]. Explosion And Shock Waves, 2019, 39(2): 023301. doi: 10.11883/bzycj-2017-0368

混凝土靶侵彻过程中空腔膨胀响应分区

doi: 10.11883/bzycj-2017-0368
基金项目: 

国家自然科学基金项目 11225213

国家自然科学基金项目 11390361

国家自然科学基金项目 11390362

西南科技大学研究生创新基金项目 16ycx089

详细信息
    作者简介:

    牛振坤(1991-), 男, 硕士研究生, 858767489@qq.com

    通讯作者:

    陈小伟(1967-), 男, 博士, 研究员, 博士生导师, chenxiaoweintu@bit.edu.cn

  • 中图分类号: O347

Cavity expansion response of concrete targets under penetration

  • 摘要: 利用LS-DYNA有限元软件对刚性弹正侵彻混凝土靶进行数值模拟,以混凝土极限压应变和极限拉应变两阈值为依据,对侵彻过程中混凝土靶空腔膨胀响应区域进行了识别划分,得到了侵彻过程中混凝土各响应区的区域大小。另外,还讨论了弹体侵彻速度对混凝土粉碎区和破裂区的影响,以及粉碎区和破裂区边界膨胀速度分别与侵彻速度的关系。计算结果表明,随着弹体侵彻速度的增大,混凝土粉碎区和破裂区界面速度都增大,粉碎区半径增大,而破裂区半径却减小;当侵彻速度达到某一特定值时,破裂区将会消失。
  • 图  1  混凝土动态球形空腔膨胀响应区域

    Figure  1.  Dynamic spherical cavity expansion response regions of concrete

    图  2  子弹和混凝土靶板的有限元模型

    Figure  2.  The finite element model for projectile and concrete target

    图  3  弹体以速度v0=749 m/s正侵彻混凝土靶板的破坏状态

    Figure  3.  Damage of a concrete target penetrated by the projectlie the the initial velocity 749 m/s at different moments

    图  4  弹体侵彻混凝土靶板的数值模拟和实验[11]结果

    Figure  4.  Numerical simulation and experimental[11] results of a projectile penetration into a concrete target

    图  5  混凝土响应分区形成过程

    Figure  5.  Formation process of concrete target response regions

    图  6  弹尖运动到位置2时混凝土的应变云图

    Figure  6.  Strain diagram of the concrete when the projectile tip moves to position 2

    图  7  位置1、2和3处截面径向应变和环向应变随半径的变化曲线

    Figure  7.  Variation curves of radial strain and circumferential strain with radius at positions 1, 2 and 3

    图  8  各位置横剖切面计算结果以及分区大小

    Figure  8.  The results of each position cross section and the size of response regions

    图  9  混凝土靶纵剖切面图以及分区情况

    Figure  9.  Longitudinal section and response regions of concrete targets

    图  10  不同侵彻速度下的混凝土横剖切面位置1等效应变云图

    Figure  10.  The equivalent strain diagrams of concrete under different penetration velocities at position 1

    图  11  混凝土粉碎区和破裂区半径与侵彻速度的关系

    Figure  11.  Sizes of crushed /cracked regions varying with penetration velocity

    图  12  粉碎区和破裂区边界膨胀速度与侵彻速度的关系

    Figure  12.  Boundary expansion velocity of crushed/cracked regions varying with penetration velocity

    表  1  K&C模型中混凝土的材料参数

    Table  1.   Material parameters of concrete in the K&C model

    密度/(kg·m-3) 泊松比 σt/MPa A0/MPa RSIZE UCF
    2 440 0.2 4 -48 3.94×102 145
    下载: 导出CSV

    表  2  弹体的材料参数[15]

    Table  2.   Material parameters of projectile[15]

    密度/(kg·m-3) 弹性模量/GPa 泊松比 屈服强度/MPa 失效应变
    7 910 210 0.3
    下载: 导出CSV

    表  3  弹体剩余速度

    Table  3.   Residual velocities of projectiles

    初始速度/(m·s-1) 剩余速度/(m·s-1)
    实验[11] 模拟
    301 0 0
    381 136 157
    434 214 234
    606 449 454
    749 615 616
    1 058 947 936
    下载: 导出CSV
  • [1] FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. International Journal of Impact Engineering, 2006, 32(10):1584-1594. DOI: 10.1016/j.ijimpeng.2005.01.012.
    [2] 武海军, 黄风雷, 金乾坤, 等.弹体贯穿钢筋混凝土数值模拟[J].爆炸与冲击, 2003, 23(6):545-550. doi: 10.3321/j.issn:1001-1455.2003.06.011

    WU Haijun, HUANG Fenglei, JIN Qiankun, et al. Numerical simulation on perforation of reinforced concrete targets[J]. Explosion and Shock Waves, 2003, 23(6):545-550. doi: 10.3321/j.issn:1001-1455.2003.06.011
    [3] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. DOI: 10.1016/0734-743X(94)80024-4.
    [4] CHEN Xiaowei, FAN S C, LI Qingmin. Oblique and normal perforation of concrete targets by a rigid projectile[J]. International Journal of Solids and Structures, 2004, 30(6):617-637. DOI: 10.1016/j.ijimpeng.2003.08.003.
    [5] FORRESTAL M J, LUK V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444. DOI: 10.1016/0734-743X(92)90167-R.
    [6] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. DOI: 10.1016/S0020-7683(97)00017-6.
    [7] ROSENBERG Z, DEKEL E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics[J]. International Journal of Impact Engineering, 2008, 35(3):147-154. DOI: 10.1016/j.ijimpeng.2007.01.005.
    [8] ROSENBERG Z, DEKEL E. Analytical solution of the spherical cavity expansion process[J]. International Journal of Impact Engineering, 2009, 36(3):193-198. DOI: 10.1016/j.ijimpeng.2007.12.014.
    [9] 王一楠, 黄风雷.混凝土材料动态球形空腔膨胀的数值模拟[J].北京理工大学学报, 2010, 30(1):5-9. DOI: 10.15918/j.tbit1001-0645.2010.01.010.

    WANG Yinan, HUANG Fenglei. Numerical simulation of dynamic spherical cavity expansion for concrete materials[J]. Transactions of Beijing Institute of Technology, 2010, 30(1):5-9. DOI: 10.15918/j.tbit1001-0645.2010.01.010.
    [10] 李志康, 黄风雷.混凝土材料的动态空腔膨胀理论[J].爆炸与冲击, 2009, 29(01):95-101. DOI: 10.11883/1001-1455(2009)01-0095-06.

    LI Zhikang, HUANG Fenglei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion and Shock Waves, 2009, 29(1):95-101. DOI: 10.11883/1001-1455(2009)01-0095-06.
    [11] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48MPa (ksi) and 140MPa (20ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(1):1-7. DOI: 10.1016/0734-743X(92)90282-X.
    [12] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873. DOI: 10.1016/S0734-743X(97)00023-7.
    [13] 匡志平, 陈少群.混凝土K&C模型材料参数分析与模拟[J].力学季刊, 2015, 36(3):517-526. DOI: 10.15959/i.cnki.0254-0053.2015.03.019.

    KUANG Zhiping, CHEN Shaoqun. Analysis and simulation for the material parameters of K&C concrete model[J]. Chinese Quarterly of Mechanics, 2015, 36(3):517-526. DOI: 10.15959/i.cnki.0254-0053.2015.03.019.
    [14] Livermore Software Technology Corporation. LS-DYNA keyword user's manual(971)[M]. Livermore:Livermore Software Technology Corporation, 2007.
    [15] 邓勇军, 陈小伟, 姚勇, 等.基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析[J].爆炸与冲击, 2017, 37(3):377-386. DOI: 10.11883/1001-1455(2017)03-0377-10.

    DENG Yongjun, CHEN Xiaowei, YAO Yong, et al. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion and Shock Waves, 2017, 37(3):377-386. DOI:10.11883/1001- 1455(2017)03-0377-10.
    [16] 朱伯龙, 董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社, 1985:1-26.
    [17] 吕西林, 金国方, 吴晓涵.钢筋混凝土非线性有限元理论与应用[M].上海:同济大学出版社, 1997:7-34.
    [18] 何丽灵, 陈小伟, 徐伟芳, 等.加速度计预埋法测量弹体侵深的机理分析[J].防护工程, 2014, 36(2):21-25.

    HE Liling, CHEN Xiaowei, XU Weifang, et al. Analysis on mechanism of pre-buried accelerometer method for DOP measurement[J]. Protective Engineering, 2014, 36(2):21-25.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  5845
  • HTML全文浏览量:  2456
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-14
  • 修回日期:  2017-12-18
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回