Cavity expansion response of concrete targets under penetration
-
摘要: 利用LS-DYNA有限元软件对刚性弹正侵彻混凝土靶进行数值模拟,以混凝土极限压应变和极限拉应变两阈值为依据,对侵彻过程中混凝土靶空腔膨胀响应区域进行了识别划分,得到了侵彻过程中混凝土各响应区的区域大小。另外,还讨论了弹体侵彻速度对混凝土粉碎区和破裂区的影响,以及粉碎区和破裂区边界膨胀速度分别与侵彻速度的关系。计算结果表明,随着弹体侵彻速度的增大,混凝土粉碎区和破裂区界面速度都增大,粉碎区半径增大,而破裂区半径却减小;当侵彻速度达到某一特定值时,破裂区将会消失。Abstract: The LS-DYNA was used to simulate the process of a rigid projectile normally penetrating into a concrete target. Based on the two threshold values of ultimate compressive strain and ultimate tensile strain of the concrete, the cavity expansion response regions of the concrete target were identified and the size of each concrete response region in the penetration process was obtained. The effect of the penetration velocity on the crushed and cracked regions of the concrete was analyzed. The relationships between the boundary expansion velocity of the crushed/cracked regions and the penetration velocity were discussed. The results indicate that with increasing the initial impacting velocity, the interface velocities of the crushed/cracked regions and the radius of the crushed region increase, but the radius of the cracked region decreases. At last, the cracked region may disappear when the penetration velocity achieves a certain critical value.
-
Key words:
- concrete /
- penetration /
- cavity /
- expansion response region /
- interface expansion velocity
-
表 1 K&C模型中混凝土的材料参数
Table 1. Material parameters of concrete in the K&C model
密度/(kg·m-3) 泊松比 σt/MPa A0/MPa RSIZE UCF 2 440 0.2 4 -48 3.94×102 145 密度/(kg·m-3) 弹性模量/GPa 泊松比 屈服强度/MPa 失效应变 7 910 210 0.3 表 3 弹体剩余速度
Table 3. Residual velocities of projectiles
初始速度/(m·s-1) 剩余速度/(m·s-1) 实验[11] 模拟 301 0 0 381 136 157 434 214 234 606 449 454 749 615 616 1 058 947 936 -
[1] FREW D J, FORRESTAL M J, CARGILE J D. The effect of concrete target diameter on projectile deceleration and penetration depth[J]. International Journal of Impact Engineering, 2006, 32(10):1584-1594. DOI: 10.1016/j.ijimpeng.2005.01.012. [2] 武海军, 黄风雷, 金乾坤, 等.弹体贯穿钢筋混凝土数值模拟[J].爆炸与冲击, 2003, 23(6):545-550. doi: 10.3321/j.issn:1001-1455.2003.06.011WU Haijun, HUANG Fenglei, JIN Qiankun, et al. Numerical simulation on perforation of reinforced concrete targets[J]. Explosion and Shock Waves, 2003, 23(6):545-550. doi: 10.3321/j.issn:1001-1455.2003.06.011 [3] FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J]. International Journal of Impact Engineering, 1994, 15(4):395-405. DOI: 10.1016/0734-743X(94)80024-4. [4] CHEN Xiaowei, FAN S C, LI Qingmin. Oblique and normal perforation of concrete targets by a rigid projectile[J]. International Journal of Solids and Structures, 2004, 30(6):617-637. DOI: 10.1016/j.ijimpeng.2003.08.003. [5] FORRESTAL M J, LUK V K. Penetration into soil targets[J]. International Journal of Impact Engineering, 1992, 12(3):427-444. DOI: 10.1016/0734-743X(92)90167-R. [6] FORRESTAL M J, TZOU D Y. A spherical cavity-expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31):4127-4146. DOI: 10.1016/S0020-7683(97)00017-6. [7] ROSENBERG Z, DEKEL E. A numerical study of the cavity expansion process and its application to long-rod penetration mechanics[J]. International Journal of Impact Engineering, 2008, 35(3):147-154. DOI: 10.1016/j.ijimpeng.2007.01.005. [8] ROSENBERG Z, DEKEL E. Analytical solution of the spherical cavity expansion process[J]. International Journal of Impact Engineering, 2009, 36(3):193-198. DOI: 10.1016/j.ijimpeng.2007.12.014. [9] 王一楠, 黄风雷.混凝土材料动态球形空腔膨胀的数值模拟[J].北京理工大学学报, 2010, 30(1):5-9. DOI: 10.15918/j.tbit1001-0645.2010.01.010.WANG Yinan, HUANG Fenglei. Numerical simulation of dynamic spherical cavity expansion for concrete materials[J]. Transactions of Beijing Institute of Technology, 2010, 30(1):5-9. DOI: 10.15918/j.tbit1001-0645.2010.01.010. [10] 李志康, 黄风雷.混凝土材料的动态空腔膨胀理论[J].爆炸与冲击, 2009, 29(01):95-101. DOI: 10.11883/1001-1455(2009)01-0095-06.LI Zhikang, HUANG Fenglei. A dynamic spherical cavity-expansion theory for concrete materials[J]. Explosion and Shock Waves, 2009, 29(1):95-101. DOI: 10.11883/1001-1455(2009)01-0095-06. [11] HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48MPa (ksi) and 140MPa (20ksi) unconfined compressive strengths[J]. International Journal of Impact Engineering, 1992, 12(1):1-7. DOI: 10.1016/0734-743X(92)90282-X. [12] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10):847-873. DOI: 10.1016/S0734-743X(97)00023-7. [13] 匡志平, 陈少群.混凝土K&C模型材料参数分析与模拟[J].力学季刊, 2015, 36(3):517-526. DOI: 10.15959/i.cnki.0254-0053.2015.03.019.KUANG Zhiping, CHEN Shaoqun. Analysis and simulation for the material parameters of K&C concrete model[J]. Chinese Quarterly of Mechanics, 2015, 36(3):517-526. DOI: 10.15959/i.cnki.0254-0053.2015.03.019. [14] Livermore Software Technology Corporation. LS-DYNA keyword user's manual(971)[M]. Livermore:Livermore Software Technology Corporation, 2007. [15] 邓勇军, 陈小伟, 姚勇, 等.基于细观混凝土模型的刚性弹体正侵彻弹道偏转分析[J].爆炸与冲击, 2017, 37(3):377-386. DOI: 10.11883/1001-1455(2017)03-0377-10.DENG Yongjun, CHEN Xiaowei, YAO Yong, et al. On ballistic trajectory of rigid projectile normal penetration based on a meso-scopic concrete model[J]. Explosion and Shock Waves, 2017, 37(3):377-386. DOI:10.11883/1001- 1455(2017)03-0377-10. [16] 朱伯龙, 董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社, 1985:1-26. [17] 吕西林, 金国方, 吴晓涵.钢筋混凝土非线性有限元理论与应用[M].上海:同济大学出版社, 1997:7-34. [18] 何丽灵, 陈小伟, 徐伟芳, 等.加速度计预埋法测量弹体侵深的机理分析[J].防护工程, 2014, 36(2):21-25.HE Liling, CHEN Xiaowei, XU Weifang, et al. Analysis on mechanism of pre-buried accelerometer method for DOP measurement[J]. Protective Engineering, 2014, 36(2):21-25.