边坡抛掷爆破峰值质点振动速度的无量纲分析

周文海 梁瑞 余建平 杜超飞 王敦繁 楼晓明

周文海, 梁瑞, 余建平, 杜超飞, 王敦繁, 楼晓明. 边坡抛掷爆破峰值质点振动速度的无量纲分析[J]. 爆炸与冲击, 2019, 39(5): 054201. doi: 10.11883/bzycj-2017-0373
引用本文: 周文海, 梁瑞, 余建平, 杜超飞, 王敦繁, 楼晓明. 边坡抛掷爆破峰值质点振动速度的无量纲分析[J]. 爆炸与冲击, 2019, 39(5): 054201. doi: 10.11883/bzycj-2017-0373
ZHOU Wenhai, LIANG Rui, YU Jianping, DU Chaofei, WANG Dunfan, LOU Xiaoming. Dimensionless analysis on peak particle vibration velocity induced by slope casting blast[J]. Explosion And Shock Waves, 2019, 39(5): 054201. doi: 10.11883/bzycj-2017-0373
Citation: ZHOU Wenhai, LIANG Rui, YU Jianping, DU Chaofei, WANG Dunfan, LOU Xiaoming. Dimensionless analysis on peak particle vibration velocity induced by slope casting blast[J]. Explosion And Shock Waves, 2019, 39(5): 054201. doi: 10.11883/bzycj-2017-0373

边坡抛掷爆破峰值质点振动速度的无量纲分析

doi: 10.11883/bzycj-2017-0373
基金项目: 国家自然科学基金(51566010,51076061);甘肃省自然科学基金(B061709)
详细信息
    作者简介:

    周文海(1989- ),男,硕士,讲师,hai2yin@163.com

    通讯作者:

    梁 瑞(1968- ),男,博士,教授,liangr@lut.cn

  • 中图分类号: O389; TU45

Dimensionless analysis on peak particle vibration velocity induced by slope casting blast

  • 摘要: 为研究边坡抛掷爆破振动波传播过程所诱发的地表质点振动情况,运用量纲分析理论构建考虑高程影响的振动峰值速度公式,在此基础上依据边坡抛掷爆破模型将炮孔药包划分为无数微元体进行积分运算,最终得到边坡抛掷爆破振动峰值速度公式。结果显示,同一地理环境和爆破工艺条件下,峰值速度主要由炸药性能、装药深度、测点与爆源间距以及爆破作用指数所决定。同时对某边坡爆破现场进行试验测振,将实测峰值速度数据分别代入萨氏公式、3个常用萨氏修正公式以及通过无量纲理论推导出的速度公式进行非线性回归运算,得到坡表面实测值与各峰值速度公式预测值之间平均误差分别为32%、34.25%、29.58%、39%和7%,坡体内实测值与各峰值速度公式预测值之间平均误差分别为27.63%、23.5%、16.88%、33.889%和13.25%。
  • 图  1  装药结构平面图

    Figure  1.  Plane diagram of loaded constitution

    图  2  监测点布置平面图

    Figure  2.  The plane drawing of monitoring points layout

    图  3  监测点C4水平方向地表振动速度

    Figure  3.  Surface vibration velocity in horizontal direction at the measured point C4

    图  4  监测点C4垂直方向地表振动速度

    Figure  4.  Surface vibration velocity in vertical direction at the measured point C4

    图  5  监测点C4 z轴方向地表振动速度

    Figure  5.  Surface vibration velocity in z direction at the measured point C4

    图  6  地表xy向峰值振速随测点距炮孔水平距离的变化

    Figure  6.  Peak vibration velocities in x and y directions of the surface varying with horizontal distances of measuring points away from blasting holes

    图  7  地表zy向峰值振速随测点距炮孔水平距离的变化

    Figure  7.  Peak vibration velocities in z and y directions of the surface varying with horizontal distances of measuring points away from blasting holes

    图  8  地表xy方向峰值振速随测点高程差的变化

    Figure  8.  Peak vibration velocities in x and y directions of the surface varying with elevation differences of measuring points

    图  9  地表zy方向峰值振速随测点高程差的变化

    Figure  9.  Peak vibration velocities in z and y directions of the surface varying with elevation differences of measuring points

    表  1  试验参数

    Table  1.   Test parameters

    测点编号 Q/kg L/m H/m vx, max/(cm·s−1) vy, max/(cm·s−1) vz, max/(cm·s−1) H2/m H1/m
    A1 575 291.8 71 0.179 2 0.233 4 0.153 6 5 2
    A2 575 301.4 88 0.158 0 0.201 2 0.147 4 5 2
    A3 575 311.2 105 0.136 7 0.177 1 0.135 1 5 2
    A4 575 320.9 122 0.110 3 0.152 4 0.128 7 5 2
    B1 575 279.4 71 1.973 6 2.177 6 1.740 2 5 2
    B2 575 288.6 88 1.692 2 1.746 2 1.583 7 5 2
    B3 575 298.1 105 1.313 5 1.452 1 1.395 2 5 2
    B4 575 307.7 122 1.009 7 1.282 2 1.316 7 5 2
    C1 975 176.19 22 2.583 8 2.207 7 1.913 2 9 4
    C2 975 178.28 37 2.671 5 2.508 3 2.084 6 9 4
    C3 975 176.26 52 2.781 4 2.835 1 2.194 6 9 4
    C4 975 177.42 67 2.943 3 3.221 7 2.284 6 9 4
    下载: 导出CSV

    表  2  实测与预测峰值速度对比表

    Table  2.   The peak velocity contrast table of measured values and predictive values

    测点编号 vy, max/
    (cm·s−1)
    公式(1) 公式(2) 公式(3) 公式(4) 公式(13)
    $ v_{{y},\max }^{(1)}/$
    (cm·s−1)
    $ {\varepsilon ^{(1)}}/ $
    %
    $ v_{{{y}},\max }^{(2)}/ $
    (cm·s−1)
    $ {\varepsilon ^{(2)}}/ $
    %
    $v_{{{y}},\max }^{(3)}/ $
    (cm·s−1)
    $ {\varepsilon ^{(3)}}/ $
    %
    $ v_{{{y}},\max }^{(4)}/$
    (cm·s−1)
    $ {\varepsilon ^{(4)}}/ $
    %
    $ v_{{{y}},\max }^{(13)}/$
    (cm·s−1)
    $ {\varepsilon ^{(13)}}/ $
    %
    A1 0.233 4 0.299 1 28 0.259 9 10 0.322 1 11 0.292 7 46 0.255 2 10
    A2 0.191 2 0.248 7 30 0.237 8 24 0.229 2 20 0.240 0 26 0.175 6 8
    A3 0.157 1 0.214 1 36 0.221 5 41 0.173 4 15 0.208 9 33 0.129 5 18
    A4 0.132 4 0.172 8 31 0.291 5 49 0.130 1 2 0.190 7 44 0.092 2 30
    B1 2.177 6 1.458 9 33 1.418 5 35 2.655 9 22 1.546 1 29 1.869 8 14
    B2 1.846 2 1.253 4 32 1.229 9 33 1.510 5 40 0.992 6 46 1.769 4 4
    B3 1.552 1 1.077 9 31 2.216 4 37 1.184 1 24 1.034 9 32 1.470 3 5
    B4 1.382 2 0.944 5 32 0.943 1 32 0.946 8 32 0.706 3 49 1.451 3 5
    C1 2.207 7 3.047 3 62 2.896 0 31 2.902 4 31 3.404 8 54 2.633 6 2
    C2 2.508 3 2.958 7 18 3.013 9 20 2.672 9 21 3.366 7 34 2.574 7 3
    C3 2.835 1 2.924 6 3 3.129 3 10 2.571 3 9 3.383 2 19 2.516 1 11
    C4 3.221 7 2.811 2 13 3.315 9 3 2.374 5 26 3.269 1 15 2.438 6 24
    下载: 导出CSV
  • [1] 吴德伦, 叶晓明. 工程爆破安全振动速度综合研究 [J]. 岩石力学与工程学报, 1997, 16(3): 266–273. doi: 10.3321/j.issn:1000-6915.1997.03.010

    WU Delun, YE Xiaoming. A comprehensive review and commendation of blast vibration safety velocity [J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(3): 266–273. doi: 10.3321/j.issn:1000-6915.1997.03.010
    [2] 张智宇, 刘殿柱, 马军, 等. 爆破振动载荷作用下露天矿高边坡动态响应分析 [J]. 防灾减灾工程学报, 2015, 35(3): 373–377. DOI: 10.13409/j.cnki.jdpme.2015.03.015.

    ZHANG Zhiyu, LIU Dianzhu, MA Jun, et al. Dynamic response analysis of high open-pit slope under blasting vibration load [J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(3): 373–377. DOI: 10.13409/j.cnki.jdpme.2015.03.015.
    [3] SINGH P K, ROY M P. Damage to surface structures due to blast vibration [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(6): 949–961. DOI: 10.1016/j.ijrmms.2010.06.010.
    [4] LU Wenbo, LUO Yi, CHEN Ming, et al. An introduction to Chinese safety regulations for blasting vibration [J]. Environmental Earth Sciences, 2012, 67(7): 1951–1959. doi: 10.1007/s12665-012-1636-9
    [5] 闫鸿浩, 李晓杰, 曲艳东, 等. 爆破振动速度测试精细分析 [J]. 岩土力学, 2007, 28(10): 2091–2094. DOI: 10.16285/j.rsm.2007.10.004.

    YAN Honghao, LI Xiaojie, QU Yandong, et al. Fine analysis of blasting vibration velocity testing [J]. Rock and Soil Mechanics, 2007, 28(10): 2091–2094. DOI: 10.16285/j.rsm.2007.10.004.
    [6] 史秀志, 陈新, 史采星, 等. 基于GEP的爆破峰值速度预测模型 [J]. 振动与冲击, 2015, 34(10): 95–99. DOI: 10.13465/j.cnki.jvs.2015.10.016.

    SHI Xiuzhi, CHEN Xin, SHI Caixing, et al. Prediction model for blasting-vibration-peak-speed based on GEP [J]. Journal of Vibration and Shock, 2015, 34(10): 95–99. DOI: 10.13465/j.cnki.jvs.2015.10.016.
    [7] MCGARR A. Estimating ground motions for small nearby earthquakes [C] // Seismic Design of Embankments and Caverns. New York: ASCE, 1983: 113−127.
    [8] 梁书锋, 王宇涛, 刘殿书, 等. 爆破振动速度预测安全保证系数的确定 [J]. 爆炸与冲击, 2015, 35(5): 741–746. DOI: 10.11883/1001-1455(2015)05-0741-06.

    LIANG Shufeng, WANG Yutao, LIU Dianshu, et al. Determination of safety coefficient for predicting blasting vibration velocity [J]. Explosion and Shock Waves, 2015, 35(5): 741–746. DOI: 10.11883/1001-1455(2015)05-0741-06.
    [9] 中华人民共和国国家质量监督检验检疫总局. 爆破安全规程: GB6722-2003 [S]. 北京: 中国标准出版社, 2004.
    [10] 顾毅成. 对应用爆破振动计算公式的几点讨论 [J]. 爆破, 2009, 26(4): 78–80. doi: 10.3969/j.issn.1006-7051.2009.04.021

    GU Yicheng. Discussion on the utilization of blasting vibration formula [J]. Blasting, 2009, 26(4): 78–80. doi: 10.3969/j.issn.1006-7051.2009.04.021
    [11] 陈均, 周洪文. 清江隔河岩水电站厂房高边坡开挖爆破振动地震效应的研究 [C] // 国际滑坡与岩土工程学术会议论文集. 武汉: 华中理工大学出版社, 1991.
    [12] MARRARA F, SUHADOLC P. Site amplifications in the city of Benevento (Italy): comparison of observed and estimated ground motion from explosive sources [J]. Journal of Seismology, 1998, 2(2): 125–143. DOI: 10.1023/a:1008052204879.
    [13] 陈明, 卢文波, 李鹏, 等. 岩质边坡爆破振动速度的高程放大效应研究 [J]. 岩石力学与工程学报, 2011, 30(11): 2189–2195. DOI: 1000-6915(2011)11-2189-07.

    CHEN Ming, LU Wenbo, LI Peng, et al. Elevation amplification effect of blasting vibration velocity in rock slope [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2189–2195. DOI: 1000-6915(2011)11-2189-07.
    [14] 朱传统, 刘宏根, 梅锦煜. 地震波参数沿边坡坡面传播规律公式的选择 [J]. 爆破, 1988(2): 30–34.

    ZHU Chuantong, LIU Honggen, MEI Jinyu. Selection of formula on propagation of the parameters of explosive seismic wave along slope [J]. Blasting, 1988(2): 30–34.
    [15] 杨珊, 陈建宏, 郭宏斌, 等. 基于回归分析的隧道爆破振动传播规律研究 [J]. 中国安全科学学报, 2011, 21(10): 71–75. DOI: 10.16265/j.cnki.issn1003-3033.2011.10.006.

    YANG Shan, CHEN Jianhong, GUO Hongbin, et al. Application of regressive analysis in the research on propagation law of tunnel blasting vibration [J]. China Safety Science Journal, 2011, 21(10): 71–75. DOI: 10.16265/j.cnki.issn1003-3033.2011.10.006.
    [16] YAN Peng, LU Wenbo, ZHANG Jing, et al. Evaluation of human response to blasting vibration from excavation of a large scale rock slope: a case study [J]. Earthquake Engineering and Engineering Vibration, 2017, 16(2): 435–446. DOI: 10.1007/s11803-017-0391-z.
    [17] 蒋楠, 周传波, 平雯, 等. 岩质边坡爆破振动速度高程效应 [J]. 中南大学学报(自然科学版), 2014, 45(1): 237–243. DOI: 1672-7207(2014)01-0237-07.

    JIANG Nan, ZHOU Chuanbo, PING Wen, et al. Altitude effect of blasting vibration velocity in rock slopes [J]. Journal of Central South University (Science and Technology), 2014, 45(1): 237–243. DOI: 1672-7207(2014)01-0237-07.
    [18] 唐海, 李海波. 反映高程放大效应的爆破振动公式研究 [J]. 岩土力学, 2011, 32(3): 820–824. DOI: 10.16285/j.rsm.2011.03.026.

    TANG Hai, LI Haibo. Study of blasting vibration formula of reflecting amplification effect on elevation [J]. Rock and Soil Mechanics, 2011, 32(3): 820–824. DOI: 10.16285/j.rsm.2011.03.026.
    [19] 刘殿中. 工程爆破实用手册 [M]. 2版. 北京: 冶金工业出版社, 1999: 217−233.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  5049
  • HTML全文浏览量:  2179
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-17
  • 修回日期:  2017-12-17
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回