Reaction zone structure of JB-9014 explosive measured by PDV
-
摘要: 为了解TATB基JB-9014炸药的爆轰过程,利用火炮驱动飞片加载,采用光子多普勒测速技术,对JB-9014炸药的爆轰反应区结构进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药爆轰时的界面粒子速度,测试过程的时间分辨率小于2 ns。将粒子速度剖面对时间进行一阶求导,通过一阶导数的拐点来确定炸药反应区宽度、反应时间。研究结果表明,钝感炸药JB-9014的反应时间为(0.26±0.02)μs,对应的化学反应区宽度为(1.5±0.2)mm,反应结束点处的压力为27.3 GPa,von Neumann峰处压力为40.3 GPa。Abstract: To understand the detonation reaction process of the TATB-based JB-9014 explosive, experimental measurements of the detonation wave profile of solid explosives using photon Doppler velocimetry (PDV) were performed. Planar detonations were produced by impacting the explosive with a sapphire flyer in a gas gun. Particle velocity wave profiles were measured at the explosive/window interface using PDV. LiF windows with very thin vapor deposited aluminum mirrors were used, and the time resolution of the measuring system was less than 2 ns. The interface velocity histories were derived to determine the reaction zone length and reaction time. The results show that the reaction time of JB-9014 is (0.26±0.02) μs, and the corresponding reaction zone length is (1.5±0.2) mm. The pressure at the end of chemical reaction is 27.3 GPa, the pressure at von Neumann spike is 40.3 GPa.
-
表 1 TATB基炸药反应区时间和宽度
Table 1. Time and length of reaction zone for TATB-based explosive
炸药 方法 τ/μs a/mm 来源 备注 JB-9014 激光测速+粒子速度求导 0.26±0.02 1.5±0.2 本文 PBX9502 激光测速+炸药状态方程 0.28 2.1 Sheffield等[7] PBX9502 曲率效应试验+数值模拟 2.9 Wescott等[19] PBX9502 激光测速+数值模拟 0.3 2 Seitz等[8] PBX9502 激光测速+炸药状态方程 0.21±0.02
0.28±0.01Dattelbaum等[20] LiF窗口
Kel-F窗口JB-9014 光电法+粒子速度求导 0.31 1.75 赵同虎等[5] TATB/inert 光电法+粒子速度求导 0.26±0.05 1.24±0.17 Loboiko等[6] -
[1] DUFF R E, HOUSTON E. Measurement of the Chapman Jouguet pressure and reaction zone length in a detonating high explosive[J]. Journal of Chemical Physics, 1955, 23(7):1268-1273. DOI: 10.1063/1.1742255. [2] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2001:151-153. [3] TASKER D G, LEE R J. The measurement of electrical conductivity in the detonating condensed explosives[C]//Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 123-126. [4] LEE R J, GUSTAVSON P K. Electrical conductivity as a realtime probe of secondary combustion of solid-fuel additives in detonating explosives[C]//Shock Compression of Condensed Matter 2003. USA: American Institute of Physics, 2004: 1273-1276. [5] 赵同虎, 张新彦, 李斌, 等.用光电法研究钝感炸药JB-9014反应区结构[J].高压物理学报, 2002, 16(2):111-119. DOI: 10.11858/gywlxb.2002.02.005.ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Detonation reaction zone structure of JB-9014[J]. Chinese Journal of High Pressure Physics, 2002, 16(2):111-119. DOI: 10.11858/gywlxb.2002.02.005. [6] LOBOIKO B L, LUBYATINSKY S N. Reaction zones of detonating solid explosives[J]. Combustion, Explosion, and Shock Waves, 2000, 36(6):716-733. DOI: 10.1023/A:1002898505288. [7] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8):3831-3844. DOI: 10.1063/1.447164. [8] SEITZ W L, STACY H L, ENGELKE R, et al. Detonation reaction-zone structure of PBX-9502[C]//Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 675-682. [9] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry (PDV)[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253-256. [10] BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conference. France: EDP Science, 2010: 378-384. [11] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]//Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209-212. [12] BOUYER V, SHEFFIELD S A, DATTELBAUM D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 177-180. [13] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques[J]. Review of Scientific Instruments, 2006, 77(8):083108. doi: 10.1063/1.2336749 [14] 项红亮, 王建, 毕重连, 等.光子多普勒速度测量系统的数据处理方法[J].光学与光电技术, 2012, 10(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2221259XIANG Hongliang, WANG Jian, BI Chonglian, et al. Data processing of photonic Doppler velocimetry system[J]. Optics & Optoelectronic Technology, 2012, 10(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2221259 [15] LIU S, WANG D, LI T, et al. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform[J]. Review of Scientific Instruments, 2011, 82(2):593-599. DOI: 10.1063/1.3534011. [16] 赵万广, 周显明, 李加波, 等.LiF单晶的高压折射率及窗口速度的修正[J].高压物理学报, 2014, 28(5):571-576. DOI: 10.11858/gywlxb.2014.05.010.ZHAO Wanguang, ZHOU Xianming, LI Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5):571-576. DOI: 10.11858/gywlxb.2014.05.010. [17] JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry[J]. Journal of Applied Physics, 2007, 101(1):523-454. DOI: 10.1063/1.2407290. [18] TARVER C M. Detonation reaction zones in condensed explosives[C]//Shock Compression of Condensed Matter 2005. USA: American Institute of Physics, 2005: 1026-1029. [19] WESCOTT B L, STEWART D S, DAVIS W C. Equation of state and reaction rate for condensed-phase explosives[J]. Journal of Applied Physics, 2005, 98(5):90-98. [20] DATTELBAUM D M, GUSTAVSEN R L, ASLAM T, et al. Influence of window characteristics on chemical reaction zone measurements in PBX 9502[C]//Proceedings of the 15th International Detonation Symposium. USA: Office of Naval Research, 2014: 396-406. DOI: 10.1063/1.2035310. [21] MADER C L. Numerical modeling of detonation[M]. Berkely, California:University of California Press, 1979:69-70. 期刊类型引用(8)
1. 贾杰,智小琦,郝春杰,李劲,郭璐,柳星河. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究. 高压物理学报. 2024(02): 130-139 . 百度学术
2. 杨林,于述贤,范群波. Zr_(77.1)Cu_(13)Ni_(9.9)非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究. 北京理工大学学报. 2023(04): 417-428 . 百度学术
3. 熊玮,张先锋,李逸,谈梦婷,刘闯,侯先苇. 活性材料冲击压缩及反应行为模拟方法研究进展. 北京理工大学学报. 2023(10): 995-1015 . 百度学术
4. 芦永进,梁增友,邓德志,朱聪. 铜基非晶合金双层药型罩射流形成及侵彻性能. 火炮发射与控制学报. 2022(01): 14-20+28 . 百度学术
5. 郭志平,王飞,姜波,张杰,程波,王传婷,何勇. ZrCuAlNi合金的Taylor撞击断裂行为研究. 兵器装备工程学报. 2022(05): 185-190 . 百度学术
6. 尚春明,施冬梅,张云峰,徐雪涛. Zr基非晶合金毁伤研究进展. 兵器装备工程学报. 2020(07): 182-186 . 百度学术
7. 陈海华,张先锋,熊玮,刘闯,魏海洋,汪海英,戴兰宏. WFeNiMo高熵合金动态力学行为及侵彻性能研究. 力学学报. 2020(05): 1443-1453 . 百度学术
8. 何丽灵,张方举,颜怡霞,谢若泽,徐艾民,周燕良. Ti-6Al-4V弹体破坏模式对冲击反应的影响研究. 爆炸与冲击. 2020(12): 58-69 . 本站查看
其他类型引用(1)
-