• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于多普勒测速技术的JB-9014炸药反应区结构研究

裴红波 黄文斌 覃锦程 张旭 赵锋 郑贤旭

皮铮迪, 陈朗, 刘丹阳, 伍俊英. CL-20基混合炸药的冲击起爆特征[J]. 爆炸与冲击, 2017, 37(6): 915-923. doi: 10.11883/1001-1455(2017)06-0915-09
引用本文: 裴红波, 黄文斌, 覃锦程, 张旭, 赵锋, 郑贤旭. 基于多普勒测速技术的JB-9014炸药反应区结构研究[J]. 爆炸与冲击, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379
Pi Zhengdi, Chen Lang, Liu Danyang, Wu Junying. Shock initiation of CL-20 based explosives[J]. Explosion And Shock Waves, 2017, 37(6): 915-923. doi: 10.11883/1001-1455(2017)06-0915-09
Citation: PEI Hongbo, HUANG Wenbin, QIN Jincheng, ZHANG Xu, ZHAO Feng, ZHENG Xianxu. Reaction zone structure of JB-9014 explosive measured by PDV[J]. Explosion And Shock Waves, 2018, 38(3): 485-490. doi: 10.11883/bzycj-2017-0379

基于多普勒测速技术的JB-9014炸药反应区结构研究

doi: 10.11883/bzycj-2017-0379
基金项目: 

国家自然科学基金项目 11602248

科学挑战专题项目 TZ2018001

国防科工局技术基础项目 JSZL2015212C001

详细信息
    作者简介:

    裴红波(1987-), 男, 博士, 助理研究员

    通讯作者:

    黄文斌, caephwb@163.com

  • 中图分类号: O381

Reaction zone structure of JB-9014 explosive measured by PDV

  • 摘要: 为了解TATB基JB-9014炸药的爆轰过程,利用火炮驱动飞片加载,采用光子多普勒测速技术,对JB-9014炸药的爆轰反应区结构进行了实验研究。实验中利用火炮发射高速蓝宝石飞片冲击起爆被测炸药,在炸药后表面安装镀膜氟化锂(LiF)窗口测量炸药爆轰时的界面粒子速度,测试过程的时间分辨率小于2 ns。将粒子速度剖面对时间进行一阶求导,通过一阶导数的拐点来确定炸药反应区宽度、反应时间。研究结果表明,钝感炸药JB-9014的反应时间为(0.26±0.02)μs,对应的化学反应区宽度为(1.5±0.2)mm,反应结束点处的压力为27.3 GPa,von Neumann峰处压力为40.3 GPa。
  • 图  1  爆轰反应区结构示意图

    Figure  1.  Schematic of the detonation wave profile

    图  2  测试系统示意图

    Figure  2.  Schematic of measurement system

    图  3  实验界面粒子速度历程

    Figure  3.  Experimental interface particle velocity-time curves

    图  4  界面粒子加速度

    Figure  4.  Interface particle acceleration history

    表  1  TATB基炸药反应区时间和宽度

    Table  1.   Time and length of reaction zone for TATB-based explosive

    炸药 方法 τ/μs a/mm 来源 备注
    JB-9014 激光测速+粒子速度求导 0.26±0.02 1.5±0.2 本文
    PBX9502 激光测速+炸药状态方程 0.28 2.1 Sheffield等[7]
    PBX9502 曲率效应试验+数值模拟 2.9 Wescott等[19]
    PBX9502 激光测速+数值模拟 0.3 2 Seitz等[8]
    PBX9502 激光测速+炸药状态方程 0.21±0.02
    0.28±0.01
    Dattelbaum等[20] LiF窗口
    Kel-F窗口
    JB-9014 光电法+粒子速度求导 0.31 1.75 赵同虎等[5]
    TATB/inert 光电法+粒子速度求导 0.26±0.05 1.24±0.17 Loboiko等[6]
    下载: 导出CSV
  • [1] DUFF R E, HOUSTON E. Measurement of the Chapman Jouguet pressure and reaction zone length in a detonating high explosive[J]. Journal of Chemical Physics, 1955, 23(7):1268-1273. DOI: 10.1063/1.1742255.
    [2] 张宝坪, 张庆明, 黄风雷.爆轰物理学[M].北京:兵器工业出版社, 2001:151-153.
    [3] TASKER D G, LEE R J. The measurement of electrical conductivity in the detonating condensed explosives[C]//Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 123-126.
    [4] LEE R J, GUSTAVSON P K. Electrical conductivity as a realtime probe of secondary combustion of solid-fuel additives in detonating explosives[C]//Shock Compression of Condensed Matter 2003. USA: American Institute of Physics, 2004: 1273-1276.
    [5] 赵同虎, 张新彦, 李斌, 等.用光电法研究钝感炸药JB-9014反应区结构[J].高压物理学报, 2002, 16(2):111-119. DOI: 10.11858/gywlxb.2002.02.005.

    ZHAO Tonghu, ZHANG Xinyan, LI Bin, et al. Detonation reaction zone structure of JB-9014[J]. Chinese Journal of High Pressure Physics, 2002, 16(2):111-119. DOI: 10.11858/gywlxb.2002.02.005.
    [6] LOBOIKO B L, LUBYATINSKY S N. Reaction zones of detonating solid explosives[J]. Combustion, Explosion, and Shock Waves, 2000, 36(6):716-733. DOI: 10.1023/A:1002898505288.
    [7] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives[J]. Journal of Chemical Physics, 1984, 80(8):3831-3844. DOI: 10.1063/1.447164.
    [8] SEITZ W L, STACY H L, ENGELKE R, et al. Detonation reaction-zone structure of PBX-9502[C]//Proceedings of the 9th International Detonation Symposium. USA: Office of Naval Research, 1989: 675-682.
    [9] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry (PDV)[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 253-256.
    [10] BOUYER V, DOUCET M, DECARIS L. Experimental measurements of the detonation wave profile in a TATB based explosive[C]//EPJ Web of Conference. France: EDP Science, 2010: 378-384.
    [11] BOUYER V, HEBERT P, DOUCET M, et al. Experimental measurements of the chemical reaction zone of TATB and HMX based explosives[C]//Shock Compression of Condensed Matter 2011. USA: American Institute of Physics, 2012: 209-212.
    [12] BOUYER V, SHEFFIELD S A, DATTELBAUM D M, et al. Experimental measurements of the chemical reaction zone of detonating liquid explosives[C]//Shock Compression of Condensed Matter 2009. USA: American Institute of Physics, 2009: 177-180.
    [13] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques[J]. Review of Scientific Instruments, 2006, 77(8):083108. doi: 10.1063/1.2336749
    [14] 项红亮, 王建, 毕重连, 等.光子多普勒速度测量系统的数据处理方法[J].光学与光电技术, 2012, 10(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2221259

    XIANG Hongliang, WANG Jian, BI Chonglian, et al. Data processing of photonic Doppler velocimetry system[J]. Optics & Optoelectronic Technology, 2012, 10(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2221259
    [15] LIU S, WANG D, LI T, et al. Analysis of photonic Doppler velocimetry data based on the continuous wavelet transform[J]. Review of Scientific Instruments, 2011, 82(2):593-599. DOI: 10.1063/1.3534011.
    [16] 赵万广, 周显明, 李加波, 等.LiF单晶的高压折射率及窗口速度的修正[J].高压物理学报, 2014, 28(5):571-576. DOI: 10.11858/gywlxb.2014.05.010.

    ZHAO Wanguang, ZHOU Xianming, LI Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction[J]. Chinese Journal of High Pressure Physics, 2014, 28(5):571-576. DOI: 10.11858/gywlxb.2014.05.010.
    [17] JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry[J]. Journal of Applied Physics, 2007, 101(1):523-454. DOI: 10.1063/1.2407290.
    [18] TARVER C M. Detonation reaction zones in condensed explosives[C]//Shock Compression of Condensed Matter 2005. USA: American Institute of Physics, 2005: 1026-1029.
    [19] WESCOTT B L, STEWART D S, DAVIS W C. Equation of state and reaction rate for condensed-phase explosives[J]. Journal of Applied Physics, 2005, 98(5):90-98.
    [20] DATTELBAUM D M, GUSTAVSEN R L, ASLAM T, et al. Influence of window characteristics on chemical reaction zone measurements in PBX 9502[C]//Proceedings of the 15th International Detonation Symposium. USA: Office of Naval Research, 2014: 396-406. DOI: 10.1063/1.2035310.
    [21] MADER C L. Numerical modeling of detonation[M]. Berkely, California:University of California Press, 1979:69-70.
  • 加载中
推荐阅读
考虑壳体运动惯性约束效应的装药燃烧裂纹网络反应演化理论模型
教继轩 等, 爆炸与冲击, 2025
含煤基固废漂珠低爆速乳化炸药的爆炸特性和热安全性
韦箫 等, 爆炸与冲击, 2025
不同点火方式下hmx基pbx炸药反应演化过程的特征分析
楼建锋 等, 爆炸与冲击, 2024
基于高压气体驱动的爆炸波模拟激波管冲击波衰减历程控制方法
程帅 等, 爆炸与冲击, 2024
聚黑铝炸药的能量输出特性及评估方法
吴星亮 等, 高压物理学报, 2022
Hns基pbx炸药爆轰驱动平板实验及产物状态方程参数确定
李淑睿 等, 高压物理学报, 2023
20 gpa斜波压缩下pbx-14炸药的动力学响应
种涛 等, 高压物理学报, 2022
Screening and characterization of novel umami peptides in cheddar cheese using peptidomics and bioinformatics approaches
Gu, Yuxiang et al., LWT-FOOD SCIENCE AND TECHNOLOGY, 2024
Experimental study on the infuence of blast hole bottom cushion medium on blasting damage characteristics and strain evolution of rock mass
ROCK MECHANICS AND ROCK ENGINEERING
A novel framework for uncovering the coordinative spectrum-effect correlation of the effective components of yangyin tongnao granules on cerebral ischemia-reperfusion injury in rats
JOURNAL OF ETHNOPHARMACOLOGY, 2024
Powered by
图(4) / 表(1)
计量
  • 文章访问数:  5658
  • HTML全文浏览量:  1605
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-18
  • 修回日期:  2017-11-15
  • 刊出日期:  2018-05-25

目录

    /

    返回文章
    返回