岩爆预警与烈度评价的声音信号分析

苏国韶 刘鑫锦 闫召富 张洁 李燕芳 燕柳斌

苏国韶, 刘鑫锦, 闫召富, 张洁, 李燕芳, 燕柳斌. 岩爆预警与烈度评价的声音信号分析[J]. 爆炸与冲击, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383
引用本文: 苏国韶, 刘鑫锦, 闫召富, 张洁, 李燕芳, 燕柳斌. 岩爆预警与烈度评价的声音信号分析[J]. 爆炸与冲击, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383
SU Guoshao, LIU Xinjin, YAN Zhaofu, ZHANG Jie, LI Yanfang, YAN Liubin. Sound signal analysis for warning and intensity evaluation of rockburst[J]. Explosion And Shock Waves, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383
Citation: SU Guoshao, LIU Xinjin, YAN Zhaofu, ZHANG Jie, LI Yanfang, YAN Liubin. Sound signal analysis for warning and intensity evaluation of rockburst[J]. Explosion And Shock Waves, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383

岩爆预警与烈度评价的声音信号分析

doi: 10.11883/bzycj-2017-0383
基金项目: 

国家自然科学基金项目 41472329

详细信息
    作者简介:

    苏国韶(1973-), 男, 博士, 教授, suguoshao@163.com

  • 中图分类号: O381;TU458;TV672

Sound signal analysis for warning and intensity evaluation of rockburst

  • 摘要: 利用真三轴岩爆实验系统在室内再现了岩爆动力破坏过程,采用数字录音笔对岩爆过程的声音信号进行监测,在声音信号预处理的基础上,对岩爆过程中的颗粒弹射、岩板劈裂、块片弹射3种岩石脆性破坏现象的不同声音特征指标进行分析。结果表明:3种典型脆性破坏现象的声音信号在波形、频谱、声纹和短时能量等特性指标上存在明显差异,这些特征指标适用于岩爆的特征提取。提出了一种基于声音信号的岩爆烈度评价指标——局部声响总能量,该指标适用于定量评价岩爆发生的剧烈程度。
  • 图  1  典型岩爆过程及其声音波形

    Figure  1.  Typical rockburst process and its sound waveform

    图  2  声音信号的分帧

    Figure  2.  Framing of sound signal

    图  3  3种典型破坏现象的声音信号波形

    Figure  3.  Waveforms of sound signals for three typical failure phenomena

    图  4  3种典型破坏现象的声音信号频谱

    Figure  4.  Spectra of sound signals of three typical failure phenomena

    图  5  3种典型破坏现象的声音信号声纹

    Figure  5.  Voiceprints of sound signals for three typical failure phenomena

    图  6  3种典型破坏现象的声音信号短时能量

    Figure  6.  Short-time energies of sound signals for three typical failure phenomena

    图  7  不同等级岩爆短时能量

    Figure  7.  Variation of short-time energies with time for different grades rockbursts

    图  8  不同等级岩爆的弹射动能与局部声响总能量

    Figure  8.  Kinetic energy and total energy of local sound for different grades of rockbursts

    表  1  3种典型破坏现象的声音信号波形特性

    Table  1.   Features of voice signal waveform for three typical failure phenomena

    破坏现象波形持续时间/s NA > 0.4
    颗粒弹射“笋芽”状0.031
    岩板劈裂“矛头”状0.47< 10
    块片弹射“三角”状0.76> 100
    下载: 导出CSV

    表  2  3种典型破坏现象的声音信号频谱

    Table  2.   Spectra of sound signals for three typical failure phenomena

    破坏现象 频谱形状 主频值/kHz 归一化幅值
    颗粒弹射 多峰 10.58 0.009
    岩板劈裂 单峰 2.13 0.005
    块片弹射 单峰 0.46 0.021
    下载: 导出CSV

    表  3  3种典型破坏现象的声纹特性

    Table  3.   Voiceprints of sound signals for three typical failure phenomena

    破坏现象 声纹体型 能量幅值 频率范围/kHz
    颗粒弹射 “带”状 1.0~2.4 7~11
    岩板劈裂 “鳞片”状 2.0~5.7 2~8
    块片弹射 “条”状 4.0~18.0 0~2
    下载: 导出CSV

    表  4  3种典型破坏现象的声音信号短时能量特性

    Table  4.   Short-time energy features of sound signals for three typical failure phenomena

    破坏现象 形状 振荡频度 最大幅值
    颗粒弹射 平滑曲线 无振荡 0.34
    岩板劈裂 局部振荡 快速 2.30
    块片弹射 连续振荡 急速 8.60
    下载: 导出CSV

    表  5  基于RF模型的岩爆典型破坏现象识别结果

    Table  5.   Identification of typical failure phenomena using RF model

    名称 训练样本数 训练样本识别率/% 预测样本数 预测样本识别准确率/%
    颗粒弹射 124 95 22 88
    岩板劈裂 52 93 10 91
    块片弹射 54 96 9 90
    下载: 导出CSV
  • [1] 冯夏庭.岩爆孕育过程的机制、预警与动态调控[M].北京:科学出版社, 2013.
    [2] 高玮, 张飞君.深部地下工程岩爆预测的筛选蚁群聚类算法[J].爆炸与冲击, 2012, 32(6):568-572. doi: 10.11883/1001-1455(2012)06-0568-05

    GAO Wei, ZHANG Feijun. Forecasting of rockburst indeep underground engineering based on abstraction ant colony clustering algorithm[J]. Explosion and Shock Waves, 2012, 32(6):568-572. doi: 10.11883/1001-1455(2012)06-0568-05
    [3] HE M C, MIAO J L, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2):286-298. doi: 10.1016/j.ijrmms.2009.09.003
    [4] 陈炳瑞, 冯夏庭, 曾雄辉, 等.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报, 2011, 30(2):275-283. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb201102008

    CHEN Bingrui, FENG Xiating, ZENG Xionghui, et al. Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2):275-283. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb201102008
    [5] 中华人民共和国国家标准编写组. GB 50287—2006水力发电工程地质勘察规范[S]. 北京: 中国计划出版社, 2006.
    [6] 刘正雄.岩爆预防及防治技术研究[J].中国铁道科学, 2001, 22(4):74-76. http://www.cqvip.com/QK/97928X/200104/5369676.html

    LIU Zhengxiong. Technical study on the prevention and cure of rockburst[J]. China Railway Science, 2001, 22(4):74-76. http://www.cqvip.com/QK/97928X/200104/5369676.html
    [7] 周辉, 孟凡震, 张传庆, 等.深埋硬岩隧洞岩爆的结构面作用机制分析[J].岩石力学与工程学报, 2015, 34(4):720-727. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504008.htm

    ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Analysis of the structural plane controlling mechanism on rockburst in deep hard rock tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4):720-727. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504008.htm
    [8] 何满潮, 苗金丽, 李德建, 等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报, 2007, 26(5):865-876. http://www.cqvip.com/qk/96026X/200705/25633809.html

    HE Manchao, MIAO Jinli, LI Dejian, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5):865-876. http://www.cqvip.com/qk/96026X/200705/25633809.html
    [9] 冯夏庭, 陈炳瑞, 明华军, 等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3):433-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201203001

    FENG Xiating, CHEN Bingrui, MING Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):433-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201203001
    [10] SU Guoshao, JIANG Jianqing, ZHAI Shaobin, et al. Influence of tunnel axis stress on strainburst: an experimental study[J]. Rock Mechanics and Rock Engineering, 2017, 50(6):1551-1567. doi: 10.1007/s00603-017-1181-7
    [11] 宫凤强, 罗勇, 司雪峰, 等.深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J].岩石力学与工程学报, 2017, 36(7):1634-1648. http://www.doc88.com/p-9137835519775.html

    GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7):1634-1648. http://www.doc88.com/p-9137835519775.html
    [12] 苏国韶, 蒋剑青, 冯夏庭, 等.岩爆弹射破坏过程的试验研究[J].岩石力学与工程学报, 2016, 35(10):1990-1999. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2888927

    SU Guoshao, JIANG Jianqing, FENG Xiating, et al. Experimental study on ejection process in rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10):1990-1999. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2888927
    [13] 王小川.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社, 2013.
    [14] 李宏松, 苏健民, 黄英来, 等.基于声音信号的特征提取方法的研究[J].信息技术, 2006, 30(1):91-94. http://mall.cnki.net/magazine/Article/HDZJ200601027.htm

    LI Hongsong, SU Jianmin, HUANG Yinglai, et al. The research on characteristics extraction based on voice signal[J]. Information Technology, 2006, 30(1):91-94. http://mall.cnki.net/magazine/Article/HDZJ200601027.htm
    [15] GIANNAKOPOULOS T, PIKRAKIS A. Introduction to audio analysis[M]. Amsterdam: Elsevier Academic Press, 2014.
    [16] 刘庆升, 徐霄鹏, 黄文浩.一种语音端点检测方法的探究[J].计算机工程, 2003, 29(3):120-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200303047

    LIU Qingsheng, XU Xiaopeng, HUANG Wenhao. Research on a speech endpoint detection method[J]. Computer Engineering, 2003, 29(3):120-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200303047
    [17] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. https://en.wikipedia.org/wiki/Random_forest
    [18] DONG Longjun, LI Xibing, PENG Kang. Prediction of rockburst classification using random forest[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2):472-477. doi: 10.1016/S1003-6326(13)62487-5
    [19] CUTLER A, CUTLER D R, STEVENS J R. Random forests[M]//ZHANG Cha, MA Yunqian. Ensemble Machine Learning. US: Springer Publishing, 2012: 157-175.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  5070
  • HTML全文浏览量:  1216
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回