• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST、EBSCO、DOAJ收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

岩爆预警与烈度评价的声音信号分析

苏国韶 刘鑫锦 闫召富 张洁 李燕芳 燕柳斌

苏国韶, 刘鑫锦, 闫召富, 张洁, 李燕芳, 燕柳斌. 岩爆预警与烈度评价的声音信号分析[J]. 爆炸与冲击, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383
引用本文: 苏国韶, 刘鑫锦, 闫召富, 张洁, 李燕芳, 燕柳斌. 岩爆预警与烈度评价的声音信号分析[J]. 爆炸与冲击, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383
SU Guoshao, LIU Xinjin, YAN Zhaofu, ZHANG Jie, LI Yanfang, YAN Liubin. Sound signal analysis for warning and intensity evaluation of rockburst[J]. Explosion And Shock Waves, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383
Citation: SU Guoshao, LIU Xinjin, YAN Zhaofu, ZHANG Jie, LI Yanfang, YAN Liubin. Sound signal analysis for warning and intensity evaluation of rockburst[J]. Explosion And Shock Waves, 2018, 38(4): 716-724. doi: 10.11883/bzycj-2017-0383

岩爆预警与烈度评价的声音信号分析

doi: 10.11883/bzycj-2017-0383
基金项目: 

国家自然科学基金项目 41472329

详细信息
    作者简介:

    苏国韶(1973-), 男, 博士, 教授, suguoshao@163.com

  • 中图分类号: O381;TU458;TV672

Sound signal analysis for warning and intensity evaluation of rockburst

  • 摘要: 利用真三轴岩爆实验系统在室内再现了岩爆动力破坏过程,采用数字录音笔对岩爆过程的声音信号进行监测,在声音信号预处理的基础上,对岩爆过程中的颗粒弹射、岩板劈裂、块片弹射3种岩石脆性破坏现象的不同声音特征指标进行分析。结果表明:3种典型脆性破坏现象的声音信号在波形、频谱、声纹和短时能量等特性指标上存在明显差异,这些特征指标适用于岩爆的特征提取。提出了一种基于声音信号的岩爆烈度评价指标——局部声响总能量,该指标适用于定量评价岩爆发生的剧烈程度。
  • 图  1  典型岩爆过程及其声音波形

    Figure  1.  Typical rockburst process and its sound waveform

    图  2  声音信号的分帧

    Figure  2.  Framing of sound signal

    图  3  3种典型破坏现象的声音信号波形

    Figure  3.  Waveforms of sound signals for three typical failure phenomena

    图  4  3种典型破坏现象的声音信号频谱

    Figure  4.  Spectra of sound signals of three typical failure phenomena

    图  5  3种典型破坏现象的声音信号声纹

    Figure  5.  Voiceprints of sound signals for three typical failure phenomena

    图  6  3种典型破坏现象的声音信号短时能量

    Figure  6.  Short-time energies of sound signals for three typical failure phenomena

    图  7  不同等级岩爆短时能量

    Figure  7.  Variation of short-time energies with time for different grades rockbursts

    图  8  不同等级岩爆的弹射动能与局部声响总能量

    Figure  8.  Kinetic energy and total energy of local sound for different grades of rockbursts

    表  1  3种典型破坏现象的声音信号波形特性

    Table  1.   Features of voice signal waveform for three typical failure phenomena

    破坏现象波形持续时间/s NA > 0.4
    颗粒弹射“笋芽”状0.031
    岩板劈裂“矛头”状0.47< 10
    块片弹射“三角”状0.76> 100
    下载: 导出CSV

    表  2  3种典型破坏现象的声音信号频谱

    Table  2.   Spectra of sound signals for three typical failure phenomena

    破坏现象 频谱形状 主频值/kHz 归一化幅值
    颗粒弹射 多峰 10.58 0.009
    岩板劈裂 单峰 2.13 0.005
    块片弹射 单峰 0.46 0.021
    下载: 导出CSV

    表  3  3种典型破坏现象的声纹特性

    Table  3.   Voiceprints of sound signals for three typical failure phenomena

    破坏现象 声纹体型 能量幅值 频率范围/kHz
    颗粒弹射 “带”状 1.0~2.4 7~11
    岩板劈裂 “鳞片”状 2.0~5.7 2~8
    块片弹射 “条”状 4.0~18.0 0~2
    下载: 导出CSV

    表  4  3种典型破坏现象的声音信号短时能量特性

    Table  4.   Short-time energy features of sound signals for three typical failure phenomena

    破坏现象 形状 振荡频度 最大幅值
    颗粒弹射 平滑曲线 无振荡 0.34
    岩板劈裂 局部振荡 快速 2.30
    块片弹射 连续振荡 急速 8.60
    下载: 导出CSV

    表  5  基于RF模型的岩爆典型破坏现象识别结果

    Table  5.   Identification of typical failure phenomena using RF model

    名称 训练样本数 训练样本识别率/% 预测样本数 预测样本识别准确率/%
    颗粒弹射 124 95 22 88
    岩板劈裂 52 93 10 91
    块片弹射 54 96 9 90
    下载: 导出CSV
  • [1] 冯夏庭.岩爆孕育过程的机制、预警与动态调控[M].北京:科学出版社, 2013.
    [2] 高玮, 张飞君.深部地下工程岩爆预测的筛选蚁群聚类算法[J].爆炸与冲击, 2012, 32(6):568-572. doi: 10.11883/1001-1455(2012)06-0568-05

    GAO Wei, ZHANG Feijun. Forecasting of rockburst indeep underground engineering based on abstraction ant colony clustering algorithm[J]. Explosion and Shock Waves, 2012, 32(6):568-572. doi: 10.11883/1001-1455(2012)06-0568-05
    [3] HE M C, MIAO J L, FENG J L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(2):286-298. doi: 10.1016/j.ijrmms.2009.09.003
    [4] 陈炳瑞, 冯夏庭, 曾雄辉, 等.深埋隧洞TBM掘进微震实时监测与特征分析[J].岩石力学与工程学报, 2011, 30(2):275-283. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb201102008

    CHEN Bingrui, FENG Xiating, ZENG Xionghui, et al. Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2):275-283. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_yslxygcxb201102008
    [5] 中华人民共和国国家标准编写组. GB 50287—2006水力发电工程地质勘察规范[S]. 北京: 中国计划出版社, 2006.
    [6] 刘正雄.岩爆预防及防治技术研究[J].中国铁道科学, 2001, 22(4):74-76. http://www.cqvip.com/QK/97928X/200104/5369676.html

    LIU Zhengxiong. Technical study on the prevention and cure of rockburst[J]. China Railway Science, 2001, 22(4):74-76. http://www.cqvip.com/QK/97928X/200104/5369676.html
    [7] 周辉, 孟凡震, 张传庆, 等.深埋硬岩隧洞岩爆的结构面作用机制分析[J].岩石力学与工程学报, 2015, 34(4):720-727. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504008.htm

    ZHOU Hui, MENG Fanzhen, ZHANG Chuanqing, et al. Analysis of the structural plane controlling mechanism on rockburst in deep hard rock tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4):720-727. http://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201504008.htm
    [8] 何满潮, 苗金丽, 李德建, 等.深部花岗岩试样岩爆过程实验研究[J].岩石力学与工程学报, 2007, 26(5):865-876. http://www.cqvip.com/qk/96026X/200705/25633809.html

    HE Manchao, MIAO Jinli, LI Dejian, et al. Experimental study on rockburst processes of granite specimen at great depth[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5):865-876. http://www.cqvip.com/qk/96026X/200705/25633809.html
    [9] 冯夏庭, 陈炳瑞, 明华军, 等.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 2012, 31(3):433-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201203001

    FENG Xiating, CHEN Bingrui, MING Huajun, et al. Evolution law and mechanism of rockbursts in deep tunnels: immediate rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3):433-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201203001
    [10] SU Guoshao, JIANG Jianqing, ZHAI Shaobin, et al. Influence of tunnel axis stress on strainburst: an experimental study[J]. Rock Mechanics and Rock Engineering, 2017, 50(6):1551-1567. doi: 10.1007/s00603-017-1181-7
    [11] 宫凤强, 罗勇, 司雪峰, 等.深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J].岩石力学与工程学报, 2017, 36(7):1634-1648. http://www.doc88.com/p-9137835519775.html

    GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7):1634-1648. http://www.doc88.com/p-9137835519775.html
    [12] 苏国韶, 蒋剑青, 冯夏庭, 等.岩爆弹射破坏过程的试验研究[J].岩石力学与工程学报, 2016, 35(10):1990-1999. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2888927

    SU Guoshao, JIANG Jianqing, FENG Xiating, et al. Experimental study on ejection process in rockburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(10):1990-1999. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2888927
    [13] 王小川.MATLAB神经网络43个案例分析[M].北京:北京航空航天大学出版社, 2013.
    [14] 李宏松, 苏健民, 黄英来, 等.基于声音信号的特征提取方法的研究[J].信息技术, 2006, 30(1):91-94. http://mall.cnki.net/magazine/Article/HDZJ200601027.htm

    LI Hongsong, SU Jianmin, HUANG Yinglai, et al. The research on characteristics extraction based on voice signal[J]. Information Technology, 2006, 30(1):91-94. http://mall.cnki.net/magazine/Article/HDZJ200601027.htm
    [15] GIANNAKOPOULOS T, PIKRAKIS A. Introduction to audio analysis[M]. Amsterdam: Elsevier Academic Press, 2014.
    [16] 刘庆升, 徐霄鹏, 黄文浩.一种语音端点检测方法的探究[J].计算机工程, 2003, 29(3):120-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200303047

    LIU Qingsheng, XU Xiaopeng, HUANG Wenhao. Research on a speech endpoint detection method[J]. Computer Engineering, 2003, 29(3):120-121. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200303047
    [17] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1):5-32. https://en.wikipedia.org/wiki/Random_forest
    [18] DONG Longjun, LI Xibing, PENG Kang. Prediction of rockburst classification using random forest[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2):472-477. doi: 10.1016/S1003-6326(13)62487-5
    [19] CUTLER A, CUTLER D R, STEVENS J R. Random forests[M]//ZHANG Cha, MA Yunqian. Ensemble Machine Learning. US: Springer Publishing, 2012: 157-175.
  • 期刊类型引用(20)

    1. 王茂杰,白桥栋,韩家祥,王进平,贺全彪. Comp.B炸药孔洞塌缩及热点生成的数值模拟. 爆破器材. 2025(02): 21-28 . 百度学术
    2. 赵东,屈可朋,董泽霖. 凝聚相炸药损伤-点火特性的研究进展. 爆破器材. 2024(03): 1-9+16 . 百度学术
    3. 张晓婧,郁红陶. 含细观缺陷固体推进剂非冲击点火性能研究进展. 兵器装备工程学报. 2024(07): 217-223 . 百度学术
    4. 白志鑫,蒋城露,刘福生,刘其军. 含能材料“热点”点火研究进展. 火炸药学报. 2023(04): 285-298 . 百度学术
    5. 白志鑫,甘云丹,蒋城露,赵锋,尚海林,李星翰,刘福生,刘其军,常相辉. 基于三维离散元方法研究热点的位置和温度对奥克托今颗粒点火燃烧的影响. 原子与分子物理学报. 2022(05): 111-118 . 百度学术
    6. 赵亚鹏,孔亮. 基于工程实例的非线性问题数值软件选取分析. 科学技术与工程. 2021(15): 6114-6122 . 百度学术
    7. 李晓杰,王小红,王宇新,闫鸿浩. 孔隙塌缩对工业炸药爆轰的多重作用. 工程爆破. 2021(04): 1-13+21 . 百度学术
    8. 蒋城露,赵锋,尚海林,张明建,刘福生,刘其军. 运用三维离散元技术模拟落锤撞击下奥克托今颗粒的点火燃烧过程. 原子与分子物理学报. 2020(05): 721-727 . 百度学术
    9. 黄彬彬,傅华,喻寅,刘仓理. 基于有限元-离散元结合方法的Steven实验三维数值模拟. 含能材料. 2020(10): 995-1002 . 百度学术
    10. 屈可朋,李亮亮,肖玮. 高低温循环及对称冲击耦合加载下炸药的安全性研究. 爆破器材. 2019(04): 43-46+53 . 百度学术
    11. 蒋城露,王昂,赵锋,尚海林,张明建,刘福生,刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理. 物理学报. 2019(22): 392-402 . 百度学术
    12. 陈京,王晗,刘萌,吴雄岗,樊学忠. 复合改性双基推进剂降感技术及感度机理研究进展. 火炸药学报. 2017(06): 7-16 . 百度学术
    13. 吕鹏博,王伟力,刘晓夏,吴世勇. 含裂纹装药缺陷的侵爆战斗部穿甲过程装药安定性的数值模拟研究. 兵器装备工程学报. 2017(11): 26-30 . 百度学术
    14. 王洪波,王旗华,卢永刚,梁斌. 冲击加载和斜波加载下PBX炸药细观结构点火特性对比. 高压物理学报. 2017(01): 27-34 . 百度学术
    15. 程晋明,傅华,叶雁,曹宇东,阳庆国. 基于X射线同轴相衬成像的炸药缺陷准静态扩展过程诊断. 高压物理学报. 2016(05): 353-357 . 百度学术
    16. 王洪波,王旗华,卢永刚,梁斌,冯晓伟. PBX炸药细观孔洞缺陷对其冲击点火特性的影响. 火炸药学报. 2015(05): 31-36 . 百度学术
    17. 王晨,陈朗,刘群,皮铮迪,胡晓棉. 多组分PBX炸药细观结构冲击点火数值模拟. 爆炸与冲击. 2014(02): 167-173 . 本站查看
    18. 郑雪,王娟,于劭钧,李玉斌. PBX细观损伤及其与安全性能的关系研究. 材料保护. 2014(S1): 166-171 . 百度学术
    19. 陶为俊,浣石,蒋国平. 非均质凝聚炸药颗粒细观数值模拟研究. 广州大学学报(自然科学版). 2013(04): 48-51 . 百度学术
    20. 芦萤萤. 离散元法在玉米脱粒机优化设计中的应用研究. 中国农机化. 2012(03): 93-95+103 . 百度学术

    其他类型引用(9)

  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  5197
  • HTML全文浏览量:  1249
  • PDF下载量:  187
  • 被引次数: 29
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-01-23
  • 刊出日期:  2018-07-25

目录

    /

    返回文章
    返回