On factors affecting minimum ignition temperature of corn starch dust cloud based on interactive orthogonal experiment
-
摘要: 采用Godbert-Greenwald (G-G)恒温炉装置,运用交互正交实验方法,研究了粉尘质量浓度、分散压力、CaCO3质量分数及其交互作用对玉米淀粉粉尘云最低着火温度 (minimum ignition temperature of dust cloud,MITC)的影响规律。通过直观分析法和方差分析法考察了各因素及其交互作用对玉米淀粉粉尘云最低着火温度影响,2种分析方法得出的结论一致。结果表明:CaCO3质量分数和粉尘质量浓度对玉米淀粉粉尘云最低着火温度影响高度显著;分散压力与粉尘质量浓度对玉米淀粉粉尘云最低着火温度的影响存在交互作用,分散压力与粉尘质量浓度的交互作用对玉米淀粉粉尘云最低着火温度的影响显著。Abstract: In order to evaluate the explosion sensitivity of corn starch dust cloud accurately, to carry out the dust explosion-proof work effectively, and to ensure safe production of grain industry, a series of experiments were performed by using a standard Godbert-Greenwald constant temperature oven device to explore the influence laws of the following factors on the minimum ignition temperature of corn starch dust cloud. These influencing factors include dust concentration, diffusing pressure, the mass fraction of CaCO3, and their interactions. The sensitivities of the minimum ignition temperature of corn starch dust cloud to these influencing factors were investigated on the basis of the interactive orthogonal design method. And the results are close through both the range analysis and the analysis of variance. The mass fraction of CaCO3 and the dust concentration have highly significant effects on the minimum ignition temperature of maize starch cloud. The interaction between the spraying pressure and the dust concentration has significant effects on the minimum ignition temperature of maize starch cloud.
-
表 1 粒度分布
Table 1. Size distribution
样品 D10/μm D25/μm D50/μm D75/μm D90/μm D100/μm 玉米淀粉 3.90 8.53 17.16 29.95 45.03 105.24 CaCO3 0.43 0.97 2.06 3.85 6.41 13.77 表 2 玉米淀粉的工业分析与元素分析
Table 2. Proximate and ultimate analysis of corn starch
元素成分质量分数/% 工业成分质量分数/% C H N S O 固定碳 挥发份 灰分 45.80 4.80 0.30 0.07 49.03 14.50 83.10 2.40 表 3 因素与水平
Table 3. Factors and levels
水平 A/MPa B/(kg·m−3) C/% 1 0.04 0.741 10 2 0.06 1.111 30 3 0.08 1.481 50 表 4 交互正交实验方案和实验结果
Table 4. Interactive orthogonal experimental details and results
实验序号 A B (A×B)1 (A×B)2 C (A×C)1 (A×C)2 (B×C)1 (B×C)2 θmin/℃ 1 2 3 4 5 6 7 8 9 10 11 12 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 475.0 2 1 1 1 1 2 2 2 2 2 2 2 2 2 480.0 3 1 1 1 1 3 3 3 3 3 3 3 3 3 500.0 4 1 2 2 2 1 1 1 2 2 2 3 3 3 465.0 5 1 2 2 2 2 2 2 3 3 3 1 1 1 473.0 6 1 2 2 2 3 3 3 1 1 1 2 2 2 485.0 7 1 3 3 3 1 1 1 3 3 3 2 2 2 453.0 8 1 3 3 3 2 2 2 1 1 1 3 3 3 463.0 9 1 3 3 3 3 3 3 2 2 2 1 1 1 482.0 10 2 1 2 3 1 2 3 1 2 3 1 2 3 477.0 11 2 1 2 3 2 3 1 2 3 1 2 3 1 487.0 12 2 1 2 3 3 1 2 3 1 2 3 1 2 513.0 13 2 2 3 1 1 2 3 2 3 1 3 1 2 467.0 14 2 2 3 1 2 3 1 3 1 2 1 2 3 470.0 15 2 2 3 1 3 1 2 1 2 3 2 3 1 495.0 16 2 3 1 2 1 2 3 3 1 2 2 3 1 435.0 17 2 3 1 2 2 3 1 1 2 3 3 1 2 443.0 18 2 3 1 2 3 1 2 2 3 1 1 2 3 480.0 19 3 1 3 2 1 3 2 1 3 2 1 3 2 480.0 20 3 1 3 2 2 1 3 2 1 3 2 1 3 485.0 21 3 1 3 2 3 2 1 3 2 1 3 2 1 490.0 22 3 2 1 3 1 3 2 2 1 3 3 2 1 455.0 23 3 2 1 3 2 1 3 3 2 1 1 3 2 463.0 24 3 2 1 3 3 2 1 1 3 2 2 1 3 487.0 25 3 3 2 1 1 3 2 3 2 1 2 1 3 445.0 26 3 3 2 1 2 1 3 1 3 2 3 2 1 457.0 27 3 3 2 1 3 2 1 2 1 3 1 3 2 482.0 表 5 实验结果直观分析
Table 5. Intuitive analysis of experimental results
分析因素 k1j k2j k3j R 分析因素 k1j k2j k3j R A 475.1 474.1 471.6 3.6 (A×C)1 476.2 472.7 471.9 4.3 B 487.4 473.3 460.0 27.4 (A×C)2 472.4 476.0 472.3 3.7 (A×B)1 468.7 476.0 476.1 7.4 (B×C)1 473.6 475.9 471.3 4.6 (A×B)2 474.6 470.7 475.6 4.9 (B×C)2 475.8 472.4 473.6 3.3 C 461.3 469.0 490.4 29.1 表 6 方差分析
Table 6. Variance analysis
差异源 Ss df Ms F 显著性 A 60.518 518 52 2 30.259 259 26 1.278 060 227 B 3 390.296 296 2 1 695.148 148 71.597 966 37 *** A×B 447.703 703 7 4 111.925 925 9 4.727 414 939 ** C 4 098.296 296 2 2 049.148 148 86.549 863 12 *** A×C 174.370 370 4 4 43.592 592 59 1.841 220 18 B×C 157.925 925 9 4 39.481 481 48 1.667 579 194 e 189.407 407 4 8 23.675 925 93 表 7 F分布临界值
Table 7. Critical values for the F-distribution
F0.05(2, 8) F0.01(2, 8) F0.1(2, 8) F0.05(4, 8) F0.01(4, 8) F0.1(4, 8) 4.46 8.65 3.11 3.84 7.01 2.81 -
[1] YAN X, YU J. Dust explosion incidents in China [J]. Process Safety Progress, 2012, 31(2): 187–189. DOI: 10.1002/prs.11482. [2] 多英全, 刘垚楠, 胡馨升. 2009~2013年我国粉尘爆炸事故统计分析研究 [J]. 中国安全生产科学技术, 2015, 11(2): 186–190. DOI: 10.11731/j.issn.1673-193x.2015.02.030.DUO Yingquan, LIU Yaonan, HU Xinsheng. Statistical analysis on dust explosion accidents occuring in China during 2009−2013 [J]. Journal of Safety Science and Technology, 2015, 11(2): 186–190. DOI: 10.11731/j.issn.1673-193x.2015.02.030. [3] 钟英鹏, 徐冬, 李刚, 等. 镁粉尘云最低着火温度的实验测试 [J]. 爆炸与冲击, 2009, 29(4): 429–433. DOI: 10.11883/1001-1455(2009)04-0429-05.ZHONG Yingpeng, XU Dong, LI Gang, et al. Measurement of minimum ignition temperature for magnesium dust cloud [J]. Explosion and Shock Waves, 2009, 29(4): 429–433. DOI: 10.11883/1001-1455(2009)04-0429-05. [4] WU D, NORMAN F, VERPLAETSEN F, et al. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres [J]. Journal of Hazardous Materials, 2016, 307: 274–280. DOI: 10.1016/j.jhazmat.2015.12.051. [5] ADDAI E K, GABAL D, KRAUSE U. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures [J]. Journal of Hazardous Materials, 2016, 307: 302–311. DOI: 10.1016/j.jhazmat.2016.01.018. [6] MIAO N, ZHONG S, YU Q. Ignition characteristics of metal dusts generated during machining operations in the presence of calcium carbonate [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 174–179. DOI: 10.1016/j.jlp.2015.12.022. [7] 李刚, 刘晓燕, 钟圣俊, 等. 粮食伴生粉尘最低着火温度的实验研究 [J]. 东北大学学报(自然科学版), 2005, 26(2): 145–147. DOI: 10.3321/j.issn:1005-3026.2005.02.012.LI Gang, LIU Xiaoyan, ZHONG Shengjun, et al. Experimental investigation on minimum ignition temperature (MIT) of dust concomitant with grain [J]. Journal of Northeastern University (Natural Science), 2005, 26(2): 145–147. DOI: 10.3321/j.issn:1005-3026.2005.02.012. [8] YUAN C, LI C, LI G, et al. Ignition temperature of magnesium powder clouds: a theoretical model [J]. Journal of Hazardous Materials, 2012, 239-240(4): 294–301. DOI: 10.1016/j.jhazmat.2012.08.081. [9] 叶亚明, 胡双启, 胡立双, 等. 锰粉尘云最低着火温度的实验研究 [J]. 科学技术及工程, 2016, 16(8): 296–299. DOI: 10.3969/j.issn.1671-1815.2016.08.051.YE Yaming, HU Shuangqi, HU Lishuang, et al. Experimental research on minimum ignition temperature of manganese dust cloud [J]. Science Technology and Engineering, 2016, 16(8): 296–299. DOI: 10.3969/j.issn.1671-1815.2016.08.051. [10] 苑春苗. 惰化条件下镁粉爆炸性参数的理论与实验研究[D]. 沈阳:东北大学, 2009: 63−65. [11] 王信群, 黄冬梅, 梁晓瑜. 火灾爆炸理论与预防控制技术[M]. 北京: 冶金工业出版社, 2012: 93−101. [12] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 粉尘云最低着火温度测定方法: GB/T 16429-1996 [S]. 北京:中国标准出版社, 1996. [13] 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京: 化学工业出版社, 2005: 214−215. [14] 刘文卿. 实验设计[M]. 北京: 清华大学出版社, 2005: 71−76.