一种考虑界面不连续的改进的有限粒子法

王璐 杨扬 徐绯

王璐, 杨扬, 徐绯. 一种考虑界面不连续的改进的有限粒子法[J]. 爆炸与冲击, 2019, 39(2): 024202. doi: 10.11883/bzycj-2017-0390
引用本文: 王璐, 杨扬, 徐绯. 一种考虑界面不连续的改进的有限粒子法[J]. 爆炸与冲击, 2019, 39(2): 024202. doi: 10.11883/bzycj-2017-0390
WANG Lu, YANG Yang, XU Fei. An improved finite particle method for discontinuous interface problems[J]. Explosion And Shock Waves, 2019, 39(2): 024202. doi: 10.11883/bzycj-2017-0390
Citation: WANG Lu, YANG Yang, XU Fei. An improved finite particle method for discontinuous interface problems[J]. Explosion And Shock Waves, 2019, 39(2): 024202. doi: 10.11883/bzycj-2017-0390

一种考虑界面不连续的改进的有限粒子法

doi: 10.11883/bzycj-2017-0390
基金项目: 

国家自然科学基金项目 11272266

国家自然科学基金项目 11702220

航空科学基金项目 2016ZD53038

中央高校基本科研业务费专项资金项目 3102017zy066

详细信息
    作者简介:

    王璐(1995-), 女, 博士研究生, wanglulu@mail.nwpu.edu.cn

    通讯作者:

    徐绯(1970-), 女, 博士, 教授, 博士生导师, xufei@nwpu.edu.cn

  • 中图分类号: O382

An improved finite particle method for discontinuous interface problems

  • 摘要: 有限粒子法(finite particle method,FPM)作为SPH(smoothed particle hydrodynamics)方法的重要改进,有效提高了边界区域粒子的近似精度,但是当FPM处理多物理场时,在不连续界面附近的计算精度会大大降低,并且FPM必须满足的矩阵非奇异性也提高了对界面处理的要求。本文中基于DSPH(discontinuous SPH)方法,提出了一种考虑界面不连续的改进FPM—DSFPM(discontinuous special FPM)法,旨在改善FPM在界面不连续处的计算精度,从而进一步提高其计算效率和稳定性。首先,分析了DSFPM的核近似精度。其次,根据不同的工程问题,给出DSFPM处理小变形和大变形问题的算法流程。利用DSFPM、DSPH和FPM等3种方法对弹性铝块小变形碰撞冲击算例进行了模拟,通过对比分析铝块的速度和应力以及计算时间验证了DSFPM算法在非连续界面处计算精度和计算效率的优势。最后,通过结合DSFPM和DFPM(discontinuous FPM)实现了对于大变形问题的模拟。
  • 图  1  界面附近粒子支持域

    Figure  1.  The supported domain of the particle near the interface

    图  2  一维情形下DSFPM粒子选取方式

    Figure  2.  Particle selection mode for 1-D DSFPM

    图  3  二维情形下DSFPM粒子选取方式

    Figure  3.  Particle selection mode for 2-D DSFPM

    图  4  3种方法估计非连续常值函数误差及其导数误差

    Figure  4.  Estimation errors for the discontinuous 0-order function and its derivative by three methods

    图  5  3种方法估计非连续一次函数误差及其导数误差

    Figure  5.  Estimation errors for the discontinuous 1-order function and its derivative by three methods

    图  6  DSFPM计算二次非连续函数本身和其偏y导数误差分布

    Figure  6.  Estimation error distribution for the discontinuous 2-order function and its partial y derivative by DSFPM

    图  7  处理碰撞冲击问题的算法框图

    Figure  7.  Algorithm diagram of the collision problem

    图  8  铝块碰撞模型

    Figure  8.  The model for the aluminum block collision

    图  9  3种方法模拟得到的铝块速度随时间的变化曲线

    Figure  9.  Velocity-time cuvers of aluminum blocks by three methods

    图  10  有限元模拟得到的铝块速度随时间的变化曲线

    Figure  10.  Velocity-time cuvers of aluminum blocks by finite element method

    图  11  3种方法模拟得到的铝块碰撞过程中的速度分布

    Figure  11.  Velocity distribution of the aluminum blocks by three methods

    图  12  3种方法模拟得到铝块碰撞过程中的x方向应力分布

    Figure  12.  x-direction total stress distribution of the aluminum blocks simulated by three methods

    图  13  3种方法模拟得到点Mx方向应力随时间的变化曲线

    Figure  13.  x-directional total stress changes at point M simulated by three methods

    图  14  物块冲击模型

    Figure  14.  The model for block collosion

    图  15  E2=72 GPa时,不同时刻框图 7算法模拟的速度分布图

    Figure  15.  Velocity distribution of the blocks simulted by the algorithm in Fig. 7 at different times when E2=72 GPa

    图  16  E2=72 MPa时,不同时刻框图 7算法模拟的速度云图

    Figure  16.  Velocity distribution of the blocks simulted by the algorithm in Fig. 7 at different times when E2=72 MPa

  • [1] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110:399-406. DOI: 10.1006/jcph.1994.1034.
    [2] 杨秀峰, 刘谋斌.SPH方法Delaunay三角刨分与自由液面重构[J].计算力学学报, 2016, 33(4):594-598. DOI: 10.7511/jslx201604027.

    YANG Xiufeng, LIU Moubin. Delaunay triangulation and free surface extraction for SPH method[J]. Chinese Journal of Computational Mechanics, 2016, 33(4):594-598. DOI: 10.7511/jslx201604027.
    [3] 龙厅, 胡德安, 韩旭.FE-ISPH与FE-WCSPH模拟流固耦合问题的比较研究[C]//中国计算力学大会.贵阳, 2014: 547. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201408004093.htm
    [4] 刘谋斌, 宗智, 常建忠.光滑粒子动力学方法的发展与应用[J].力学进展, 2011, 41(2):219-236. DOI: 10.6052/1000-0992-2011-2-lxjzJ2010-078.

    LIU Moubin, ZONG Zhi, CHANG Jianzhong. Developments and applications of smoothed particle hydrodynamics[J]. Advances in Mechanics, 2011, 41(2):219-236. DOI: 10.6052/1000-0992-2011-2-lxjzJ2010-078.
    [5] 傅学金, 强洪夫, 杨月诚.固体介质中SPH方法的拉伸不稳定性问题研究进展[J].力学进展, 2007, 37(3):375-388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.

    FU Xuejin, QIANG Hongfu, YANG Yuecheng. Advances in the tensile instability of smoothed particle hydrodynamics applied to solid dynamics[J]. Advances in Mechanics, 2007, 37(3):375-388. DOI: 10.3321/j.issn:1000-0992.2007.03.005.
    [6] LIU W K, JUN S, LI S, et al. Reproducing kernel particle methods for structure dynamics[J]. International Journal for Numerical Methods in Engineering, 1995, 38(10):1655-1679. DOI: 10.1002/nme.1620381005.
    [7] CHEN J K, BERAUN J E. A generalized smoothed particle hydrodynamics method for nonlinear dynamic problem[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190:225-239. DOI: 10.1016/S0045-7825(99)00422-3.
    [8] 章杰, 苏少卿, 郑宇, 等.改进SPH方法在陶瓷材料层裂数值模拟中的应用[J].爆炸与冲击, 2013, 33(4):401-407. DOI: 10.3969/j.issn.1001-1455.2013.04.011.

    ZHANG Jie, SU Shaoqing, ZHENG Yu, et al. Application of modified SPH method to numerical simulation of ceramic spallation[J]. Explosion and Shock Waves, 2013, 33(4):401-407. DOI: 10.3969/j.issn.1001-1455.2013.04.011.
    [9] LIU M B, LIU G R. Restoring particle consistency in smoothed particle hydrodynamics[J]. Applied Numerical Mathematics, 2006, 56(1):19-36. DOI: 10.1016/j.apnum.2005.02.012.
    [10] 郑兴, 段文洋.K2_SPH方法及其对二维非线性水波的模拟[J].计算物理, 2011, 28(5):659-666. DOI: 10.3969/j.issn.1001-246X.2011.05.004.

    ZHENG Xing, DUAN Wenyang. K2_SPH Method and application for 2D nonlinear water wave simulation[J]. Chinese Journal of Computational Physics, 2011, 28(5):659-666. DOI: 10.3969/j.issn.1001-246X.2011.05.004.
    [11] 刘谋斌, 杨秀峰, 邵家儒.高精度SPH方法及其在海洋工程中的应用[C]//颗粒材料计算力学会议论文集.兰州, 2014: 39-41. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU201408001007.htm
    [12] ADAMI S, HU X Y, ADAMS N A. A generalized wall boundary condition for smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2012, 231(21):7057-7075. DOI: 10.1016/j.jcp.2012.05.005.
    [13] LIU M B, SHAO J R, CHANG J Z. On the treatment of solid boundary in smoothed particle hydrodynamics[J]. Science China:Technological Sciences, 2012, 55(1):244-254. DOI: 10.1007/s11431-011-4663-y.
    [14] LIU M B, LIU G R, LAM K Y. A one-dimensional meshfree particle formulation for simulating shock waves[J]. Shock Wave, 2003, 13:201-211. DOI: 10.1007/s00193-003-0207-0.
    [15] XU F, ZHAO Y, YAN R, et al. Multi-dimensional discontinuous SPH method and its application to metal penetration analysis[J]. International Journal for Numerical Methods in Engineering, 2013, 93:1125-1146. DOI: 10.1002/nme.4414.
    [16] 闫蕊, 徐绯, 张岳青.DSPH方法的有效性验证及应用[J].爆炸与冲击, 2013, 33(2):133-139. DOI: 10.3969/j.issn.1001-1455.2013.02.004.

    YAN Rui, XU Fei, ZHANG Yueqing. Validation of DSPH method and its application to physical problems[J]. Explosion and Shock Waves, 2013, 33(2):133-139. DOI: 10.3969/j.issn.1001-1455.2013.02.004.
    [17] 宋俊豪, 张超英, 梁朝湘, 等.RDSPH:一种适用于一维非连续条件的新SPH方法[J].广西师范大学学报(自然科学版), 2009, 27(3):9-13. DOI: 10.3969/j.issn.1001-6600.2009.03.003.

    SONG Junhao, ZHANG Chaoying, LIANG Chaoxiang, et al. A new one-dimensional smoothed particle hydrodynamics method in simulating discontinuous problem[J], Journal of Guangxi Normal University (Natural Science Edition), 2009, 27(3):9-13. DOI: 10.3969/j.issn.1001-6600.2009.03.003.
    [18] YANG Yang, XU Fei, ZHANG Meng, et al. An effective improved algorithm for finite particle method[J]. International Journal of Computational Methods, 2016, 13(4):1641009. DOI: 10.1142/S0219876216410097.
    [19] MONAGHAN J J. Smoothed particle hydrodynamic[J]. Annual Review of Astronomy and Astrophysics, 1992, 30(1):543-574. DOI: 10.1146/annurev.aa.30.090192.002551.
    [20] MONAGHAN J J, KAJTAR J. SPH particle boundary forces for arbitrary boundaries[J]. Computer Physics Communications, 2009, 180(10):1811-1820. DOI: 10.1016/j.cpc.2009.05.008.
  • 加载中
图(16)
计量
  • 文章访问数:  6224
  • HTML全文浏览量:  2162
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2018-01-10
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回