• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟

冯春 李世海 郑炳旭 崔晓荣 贾建军

吕军军, 曾庆轩, 李明愉, 周利存. 起爆高密度TATB炸药的飞片速度阈值[J]. 爆炸与冲击, 2014, 34(1): 125-128. doi: 10.11883/1001-1455(2014)01-0125-04
引用本文: 冯春, 李世海, 郑炳旭, 崔晓荣, 贾建军. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟[J]. 爆炸与冲击, 2019, 39(2): 024201. doi: 10.11883/bzycj-2017-0393
Lü Jun-jun, Zeng Qing-xuan, Li Ming-yu, Zhou Li-cun. Threshold impact velocity for detonation initiation in high-density TATB explosive by flyer[J]. Explosion And Shock Waves, 2014, 34(1): 125-128. doi: 10.11883/1001-1455(2014)01-0125-04
Citation: FENG Chun, LI Shihai, ZHENG Bingxu, CUI Xiaorong, JIA Jianjun. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM[J]. Explosion And Shock Waves, 2019, 39(2): 024201. doi: 10.11883/bzycj-2017-0393

基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟

doi: 10.11883/bzycj-2017-0393
基金项目: 

国家重点研发计划项目 2016YFC0801600

鞍钢矿业集团“基于采选总成本的爆破技术优化研究”项目 2016-科A07-2

详细信息
    作者简介:

    冯春(1982-), 男, 硕士, 高级工程师, fengchun@imech.ac.cn

  • 中图分类号: O389

Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM

  • 摘要: 爆破开采是露天矿采选总成本控制的首要环节,数值模拟是进行露天矿爆破开采优化设计及爆破效果分析的有效手段。利用连续-非连续单元方法(continuum-discontinuum element method,CDEM)对露天矿的三维台阶爆破过程进行了模拟,通过朗道爆炸模型实现了爆炸作用力的精确计算,通过弹性-损伤-断裂本构实现了岩体损伤破裂过程的描述,通过半弹簧-目标面及半棱-目标棱的联合接触算法实现了破碎岩块碰撞、飞散及堆积过程的高效模拟。开展了小尺度单自由面爆破过程的数值模拟,计算给出的块度分布曲线、爆破漏斗体积等参数与文献中模型实验的结果基本一致,证明了CDEM及本文所述各类模型在模拟爆炸破岩方面的精确性。以鞍千矿南采区的露天铁矿爆破开采为研究对象,建立了3排21炮孔的三维台阶爆破概化模型,模拟了从炸药起爆、岩体损伤破裂到最后爆堆形成的全过程;计算结果表明,除后缘拉裂槽外,数值计算给出的爆堆形态、顶部鼓起高度等与现场的测试结果基本一致,证明了利用CDEM开展三维露天台阶爆破全过程模拟的可行性。
  • TATB类炸药是以TATB炸药为基的钝感炸药, 近几十年来, TATB类炸药的性能尤其是其短脉冲冲击的起爆性能, 越来越受到关注。

    J.Campos等[1]设计了新型的雷管起爆装置, 首先采用微型雷管驱动二次飞片, 飞片撞击起爆钝感装药PBX-RU81(以RDX炸药为基), 该装置可用于直接起爆更钝感的主装药。实验中, 采用Fabry-Perot光学测量装置记录了飞片位移曲线, 并讨论了二次飞片厚度对RU81起爆性能的影响。W.C.Prinse等[2]设计了含有冲击片雷管、二次飞片、传爆药和主装药的起爆序列, 实验证明采用不锈钢、聚酯薄膜和铝飞片可以起爆低密度TATB炸药(ρ=1.688g/cm3), 但采用二次飞片未能起爆高密度的TATB炸药(ρ=1.842g/cm3)。B.He等[3]通过实验和数值模拟, 系统研究了飞片起爆亚微米(炸药颗粒平均粒径为0.578μm)低密度(ρ=1.75g/cm3)TATB炸药的性能, 得到了飞片直径、厚度与飞片可靠起爆TATB装药阈值速度的关系。

    本文中, 采用钝感起爆序列分别驱动二次飞片和三次飞片撞击TATB装药, 利用全光纤激光干涉测速系统分别测得飞片可靠起爆和未起爆TATB炸药的速度, 并结合数值模拟获得飞片驱动、TATB炸药起爆过程, 在飞片尺寸一定的情况下, 初步确定飞片起爆高密度TATB炸药(ρ=1.895g/cm3)的速度阈值范围。

    为起爆钝感TATB炸药, 设计了三次飞片起爆序列, 飞片起爆钝感TATB炸药的实验装置如图 1所示。脉冲功率装置产生的脉冲能量使金属爆炸箔发生快速电爆炸, 爆炸形成的等离子体剪切并驱动聚酰亚胺飞片层产生飞片, 起爆初级装药HNS-IV, 初级装药爆轰驱动二次飞片冲击起爆二级炸药LLM-105, LLM-105炸药爆轰驱动三次飞片起爆钝感TATB装药。实验采用的初级装药为HNS-IV, 尺寸为∅4mm×4mm; 次级装药为分别为HNS-IV、RDX和LLM-105;二次飞片和三次飞片材料均为金属钛, 其中二次飞片尺寸为∅4mm×0.11mm, 三次飞片尺寸分别为∅4mm×0.11mm、∅6mm×0.11mm和∅10mm×0.11mm。

    图  1  飞片起爆钝感TATB炸药实验示意图
    Figure  1.  Experimental sketch of initiation of insensitive TATB explosive by flyer

    表 1为部分飞片起爆钝感TATB炸药实验的序列结构和起爆结果。实验1、2、3直接采用HNSIV, 增加HNS-IV装药量和采用RDX二级装药不能起爆钝感TATB炸药。实验4、5不含有二次飞片, 初级装药HNS-IV直接接触起爆二级装药LLM-105并驱动飞片, 高密度TATB装药未起爆。实验6、7中, 初级装药HNS-IV驱动二次飞片撞击二级装药LLM-105, LLM-105装药爆轰驱动三次飞片撞击TATB装药, TATB装药稳定爆轰。

    表  1  飞片起爆钝感TATB炸药的实验及结果
    Table  1.  Experiments and results of initiation of insensitive TATB explosive initiated by flyer
    实验 初级装药 二次飞片 二级装药 三次飞片 结果
    材料 d/mm h/mm d/mm h/mm 材料 d/mm h/mm d/mm h/mm
    1 HNS-IV 4 4 4 0.11 - - - - - 未起爆
    2 HNS-IV 4 4 4 0.11 HNS-IV 6.3 5 4 0.11 未起爆
    3 HNS-IV 4 4 4 0.11 RDX 7.0 5 4 0.11 未起爆
    4 HNS-IV 4 4 - - LLM-105 6.3 5 4 0.11 未起爆
    5 HNS-IV 4 4 - - LLM-105 6.3 5 6 0.11 未起爆
    6 HNS-IV 4 4 4 0.11 LLM-105 10.0 10 6 0.11 起爆
    7 HNS-IV 4 4 4 0.11 LLM-105 10.0 10 10 0.11 起爆
    下载: 导出CSV 
    | 显示表格

    为初步获取∅6mm×0.11mm钛飞片起爆TATB装药的速度上下限, 采用全光纤激光位移干涉测速测速系统(AFDISAR)对实验2、3三次飞片速度进行测量, 分别获得飞片未起爆和可靠起爆TATB装药的飞片速度曲线。飞片速度测试如图 2所示。三次飞片在炸药驱动下运动, 将激光探头照射的光返回到耦合器, 经光电探测器记录得到飞片的速度。

    图  2  三次飞片速度测试示意图
    Figure  2.  Sketch map of measurement of the third flyer velocity

    对LLM-105炸药爆轰驱动钛飞片的过程和钛飞片冲击起爆主装药TATB炸药的过程进行数值模拟, 与实验结果进行比较。

    简化实验模型, 建立∅6.3mm×5mm和∅10.0mm×10mm的LLM-105炸药爆轰驱动飞片的模型, 采用轴对称结构。在计算过程中, 钛飞片采用弹塑性流体动力学模型, LLM-105采用高能炸药燃烧模型, 采用JWL状态方程描述炸药的爆轰产物压力、体积和能量特性。JWL状态方程的形式为:

    p=A(1ωR1V)eR1V+B(1ωR2V)eR2V+ωEV
    (1)

    式中:p为压力, V为相对体积, E为内能, ABR1R2ω为常数。在实验中, LLM-105密度为1.82g/cm3, 参数分别为:A=852GPa, B=18GPa, R1=4.6, R2=1.3, ω=0.3, E0=10.2GJ/m3

    飞片起爆TATB炸药属于高压短脉冲冲击起爆, 采用JWL方程描述未反应炸药和爆轰产物状态, 采用三项式点火增长模型反应速率方程描述TATB炸药的反应过程。点火增长模型反应速率方程为:

    ˙λ=I(1λ)b(ρ/ρ01a)x+G1(1λ)cλdpy+G2(1λ)eλgpz0<F<Fig,max,0<F<FG1,max,1<F<FG2,min
    (2)

    式中:IG1G2abcdegxyz是12个可调参数。ρ0为炸药初始密度, ρ0=1.895g/cm3, 主要参数引自文献[4-5]。

    图 3(a)为实验5的飞片速度曲线:在飞片速度上升阶段, 实验结果和数值模拟结果比较一致, 平滑段数值模拟结果大于实验结果, 主要因为在数值模拟中, 未考虑LLM-105炸药的爆轰稀疏波的影响, 飞片也不受空气阻力的作用。图 3(b)为实验6的飞片速度曲线, 实验结果整体小于数值模拟结果, 这是因为在数值模拟中, 没有考虑稀疏波和空气阻力的作用。图 3中, 为了更清晰的得出飞片的速度曲线, 对AFDISAR测速系统测得曲线的点进行了筛选。

    图  3  钛飞片速度
    Figure  3.  Experimental and simulational results of titanium flyer speed

    表 1图 3可知, 当∅6mm×0.11mm钛飞片以3.834km/s的速度撞击TATB装药时, TATB装药未起爆, 当∅6mm×0.11mm钛飞片以4.350km/s的速度撞击TATB装药时, TATB装药起爆。图 4(a)是钛飞片以3.834km/s的速度撞击炸药时, 炸药压力曲线的数值模拟结果。可以看出, 炸药界面处的压力峰值为38GPa, 受稀疏波的影响, 炸药内压力逐渐减小, 在8和9mm处压力不足20GPa, 结果炸药没有稳定爆轰。图 4(b)是钛飞片以4.350km/s的速度撞击炸药时, 炸药压力曲线的数值模拟结果。可以看出, 在炸药界面处的压力为约46GPa, 随着爆轰波的传播, 在2和4mm处的压力分别为38.38和35GPa, 受稀疏波的影响, 在8和9mm处压力分别降至29.19和29.5GPa。由炸药不同位置处的压力曲线可以判定, 炸药达到稳定爆轰。

    图  4  炸药的压力曲线
    Figure  4.  Pressure curves of explosives

    采用现有的冲击片雷管直接驱动二次飞片不能起爆高密度TATB装药, 通过飞片起爆序列实验设计, 得出飞片可靠起爆高密度TATB装药的起爆序列, 且序列中所用的装药满足钝感起爆序列许用装药要求。

    采用AFDISAR系统, 测得钛飞片未起爆和起爆TATB炸药的速度分别为3.834和4.350km/s。通过DYNA2D程序对飞片速度和起爆TATB炸药过程进行数值模拟, 模拟结果与实验结果一致。初步确定了钛飞片起爆高密度TATB装药的阈值速度范围。

  • 图  1  虚拟界面上的本构曲线

    Figure  1.  Constitutive curves at virtual interface

    图  2  半弹簧-半棱示意图

    Figure  2.  Semi-spring and semi-edge schematics

    图  3  两类接触对

    Figure  3.  Two types of contact pairs

    图  4  试样及炮孔尺寸

    Figure  4.  The size of specimen and bore hole

    图  5  不同时刻岩体的破碎运动情况

    Figure  5.  Fracture and movement of rock at different times

    图  6  爆破漏斗的形态

    Figure  6.  Shape of crater

    图  7  块度分布曲线

    Figure  7.  Block distributing curves

    图  8  含21炮孔的三自由面台阶爆破模型

    Figure  8.  The bench blasting model with three free surfaces and twenty-one bore holes

    图  9  不同时刻的总位移云图

    Figure  9.  Displacement magnitude contours at different times

    图  10  爆堆剖视图

    Figure  10.  Section views of muckpile

    图  11  破裂度时程曲线

    Figure  11.  History of fracture degree

    图  12  南采区的典型爆堆

    Figure  12.  Typical muckpiles in south region

    表  1  关键指标对比

    Table  1.   Comparison of key indexes

    方法 爆破漏斗体积/cm3 K50 /mm K80 /mm
    实验值 426.6 48.6 64.0
    数值解 478.7 56.2 97.2
    误差/% 12.2 15.6 51.9
    下载: 导出CSV
  • [1] BATTISON R, ESEN S, DUGGAN R, et al. Reducing crest loss at Barrick Cowal Gold Mine[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [2] GOSWAMI T, MARTIN E, ROTHERY M, et al. A holistic approach to managing blast outcomes[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [3] MINCHINTON A, LYNCH P M. Fragmentation and heave modelling using coupled discrete element gas flow code[J]. Fragblast, 1997, 1(1):41-57. DOI: 10.1080/13855149709408389.
    [4] PREECE D S, TAWADROUS A, SILLING S A, et al. Modelling full-scale blast heave with three-dimensional distinct elements and parallel processing[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [5] ESEN S, NAGARAJAN M. Muck pile shaping for draglines and dozers at surface coalmines[C]//Proceedings of 11th International Symposium on Rock Fragmentation. Carlton Victoria: The Australasian Institute of Mining and Metallurgy, 2015.
    [6] PREECE D S. Rock motion simulation and prediction of porosity distribution for a two-void-level retort[R]. Albuquerque, NM (USA): Sandia National Labs., 1990.
    [7] PREECE D S, KNUDSEN S D. Coupled rock motion and gas flow modeling in blasting[R]. Albuquerque, NM (USA): Sandia National Labs., 1991.
    [8] TAYLOR L M, PREECE D S. Simulation of blasting induced rock motion using spherical element models[J]. Engineering Computations, 1992, 9(2):243-252. DOI: 10.1108/eb023863.
    [9] ONEDERRA I, RUEST M, CHITOMBO G P. Burden movement experiments using the hybrid stress blasting model (HSBM)[C]//Proceedings of EXPLO 2007 Blasting: Techniques and Technology. Wollongong, NSW, Australia: The Australasian Institute of Mining and Metallurgy, 2007, 7(7): 177-183.
    [10] SELLERS E, FURTNEY J, ONEDERRA I, et al. Improved understanding of explosive-rock interactions using the hybrid stress blasting model[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2012, 112(8):721-728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7fb32a0c9105ffc3b986dd310fbcd5c1
    [11] ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58:73-84. DOI: 10.1016/j.ijrmms.2012.10.004.
    [12] 丁希平.深孔台阶爆破应力场及若干设计参数的数值分析研究[D].北京: 铁道部科学研究院, 2001. http://cdmd.cnki.com.cn/Article/CDMD-83801-2001009740.htm
    [13] 璩世杰, 刘际飞.节理角度对预裂爆破成缝效果的影响研究[J].岩土力学, 2015, 36(1):189-194. DOI: 10.16285/j.rsm.2015.01.026.

    QU Shijie, LIU Jifei. Numerical analysis of joint angle effect on cracking with presplit blasting[J]. Rock and Soil Mechanics, 2015, 36(1):189-194. DOI: 10.16285/j.rsm.2015.01.026.
    [14] HU Yingguo, LU Wenbo, CHEN Ming, et al. Numerical simulation of the complete rock blasting response by SPH-DAM-FEM approach[J]. Simulation Modelling Practice and Theory, 2015, 56:55-68. DOI: 10.1016/j.simpat.2015.04.001.
    [15] 谢冰, 李海波, 王长柏, 等.节理几何特征对预裂爆破效果影响的数值模拟[J].岩土力学, 2011, 32(12):3812-3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.

    XIE Bing, LI Haibo, WANG Changbai, et al. Numerical simulation of presplit blasting influenced by geometrical characteristics of joints[J]. Rock and Soil Mechanics, 2011, 32(12):3812-3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.
    [16] 周旺潇, 严鹏, 郑炳旭, 等.爆破漏斗形成过程数值模拟的几个关键问题[J].爆破, 2014, 31(3):15-22. DOI: 10.3963/j.issn.1001-487X.2014.03.004.

    ZHOU Wangxiao, YAN Peng, ZHENG Bingxu, et al. Key problems in simulation of formation process of blasting crater[J]. Blasting, 2014, 31(3):15-22. DOI: 10.3963/j.issn.1001-487X.2014.03.004.
    [17] YAN Peng, ZHOU Wangxiao, LU Wenbo, et al. Simulation of bench blasting considering fragmentation size distribution[J]. International Journal of Impact Engineering, 2015, 90:132-145. DOI: 10.1016/j.ijimpeng.2015.11.015.
    [18] TRIVINO L F, MOHANTY B. Assessment of crack initiation and propagation in rock from explosion-induced stress waves and gas expansion by cross-hole seismometry and FEM-DEM method[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77:287-299. DOI: 10.1016/j.ijrmms.2015.03.036.
    [19] 甯尤军, 杨军, 陈鹏万.节理岩体爆破的DDA方法模拟[J].岩土力学, 2010, 31(7):2259-2263. DOI: 10.3969/j.issn.1000-7598.2010.07.040.

    NING Youjun, YANG Jun, CHEN Pengwan. Numerical simulation of rock blasting in jointed rock mass by DDA method[J]. Rock and Soil Mechanics, 2010, 31(7):2259-2263. DOI: 10.3969/j.issn.1000-7598.2010.07.040.
    [20] 郑炳旭, 冯春, 宋锦泉, 等.炸药单耗对赤铁矿爆破块度的影响规律数值模拟研究[J].爆破, 2015, 32(3):62-69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.

    ZHENG Bingxu, FENG Chun, SONG Jinquan, et al. Numerical study on relationship between specific charge and fragmentation distribution of hematite[J]. Blasting, 2015, 32(3):62-69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.
    [21] LI S H, WANG J G, LIU B S, et al. Analysis of critical excavation depth for a jointed rock slope using a face-to-face discrete element method[J]. Rock Mechanics and Rock Engineering, 2007, 40(4):331-348. DOI: 10.1007/s00603-006-0084-9.
    [22] WANG Yuannian, ZHAO Manhong, LI Sihai et al. Stochastic structural model of rock and soil aggregates by continumm-based discrete element method[J]. Scinece in China:Series E:Engineering and Materials Science, 2005, 48(suppl):95-106. DOI: 10.1360/04zze13.
    [23] FENG Chun, LI Shihai, LIU Xiaoyu, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1):26-35. DOI: 10.1016/j.jrmge.2013.12.001.
    [24] 冯春, 李世海, 刘晓宇.半弹簧接触模型及其在边坡破坏计算中的应用[J].力学学报, 2011, 43(1):184-192. DOI: 10.6052/0459-1879-2011-1-lxxb2010-080.

    FENG Chun, LI Shihai, LIU Xiaoyu. Semi-spring contact model and its application to failure simulation of slope[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1):184-192. DOI: 10.6052/0459-1879-2011-1-lxxb2010-080.
    [25] 段宗银, 施发伍, 张良贵.爆破块度分布与控制的模拟试验研究[J].爆破, 2010, 27(2):45-48;83. DOI: 10.3963/j.issn.1001-487X.2010.02.012.

    DUAN Zongyin, SHI Fawu, ZHANG Lianggui. Simulation test on distribution and control of blasting fragmentation[J]. Blasting, 2010, 27(2):45-48;83. DOI: 10.3963/j.issn.1001-487X.2010.02.012.
  • 期刊类型引用(4)

    1. 刘通有,王健. 基于灰色理论的飞片冲击起爆参数优化设计. 兵器装备工程学报. 2022(02): 58-64 . 百度学术
    2. 陈清畴,刘刚,马弢. 飞片初始形状对雷管起爆能力的影响. 火工品. 2020(01): 6-9 . 百度学术
    3. 任志伟,甘强,钱石川,冯长根. 飞片材料对HNS-IV炸药冲击点火的影响研究~(【1】). 计算机仿真. 2019(02): 9-13 . 百度学术
    4. 李蛟,褚恩义,同红海,周密,王寅. 低能爆炸箔电爆参数及冲击片速度测试. 火工品. 2015(06): 24-27 . 百度学术

    其他类型引用(3)

  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  6677
  • HTML全文浏览量:  2513
  • PDF下载量:  88
  • 被引次数: 7
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2018-02-23
  • 刊出日期:  2019-02-05

目录

/

返回文章
返回