A double-striker electromagnetic driving SHPB system for soft materials
-
摘要: 软材料的动态力学性能研究一直备受关注,目前分离式Hopkinson压杆(split Hopkinson pressure bar, SHPB)技术是其最重要的测试手段,然而在测试超软材料时实验装置设计方面仍存在许多有待改进之处。本文中研制了一套双子弹电磁驱动SHPB系统,使用聚碳酸酯作为杆件材料以克服软材料试件带来的诸多困难,引入了双子弹设计方案解决了电磁驱动方式难以应用于非铁磁材料的问题,并有效保证了子弹速度的准确控制。使用双子弹电磁驱动SHPB系统和传统金属SHPB装置同时对硅胶材料的动态力学性能进行了测试,实验结果的吻合性验证了本套系统的可靠性。应用双子弹电磁驱动SHPB系统开展了聚乙烯醇(polyvinyl alcohols, PVA)水凝胶这种超软材料在高应变率下的实验,成功表征出其动态力学性能。
-
关键词:
- 分离式Hopkinson压杆(SHPB) /
- 电磁驱动 /
- 双子弹 /
- 软材料
Abstract: The dynamic mechanical properties of soft materials have attracted great attention, and the separated Hopkinson pressure bar (SHPB) technique is the most important test method at present. However, the SHPB technique still needs some improvements when it is applied to extra-soft materials. So, a double-striker electromagnetic driving SHPB system was developed. In the developed system, the bars were made of polycarbonate, and the double-striker scheme was designed to precisely control the velocities of the strikers. Both the aluminum SHPB facility and the double-striker electromagnetic driving SHPB system were employed to carry out dynamic experiments on the silicone, and the agreement between the test results by these two systems indicated the reliability of the innovative system. And dynamic mechanical properties of PVA hydrogels were successfully tested by the double-striker electromagnetic driving SHPB system. -
表 1 聚碳酸酯杆件的长度
Table 1. Lengths of polycarbonate bars
组号 子弹长度/mm 入射杆长度/mm 透射杆长度/mm 1 200 600 300 2 400 1 000 600 表 2 子弹速度与充电电压的关系
Table 2. Relation between striker velocity and charging voltage
充电电压/V 长200 mm子弹的
速度/(m·s−1)长400 mm子弹的
速度/(m·s−1)充电电压/V 长200 mm子弹的
速度/(m·s−1)长400 mm子弹的
速度/(m·s−1)100 1.52±0.10 1.61±0.08 260 2.86±0.09 4.37±0.08 120 1.82±0.09 1.91±0.07 280 2.90±0.10 4.44±0.09 140 1.98±0.09 2.26±0.07 300 3.13±0.11 4.64±0.08 160 2.14±0.09 2.60±0.08 320 3.19±0.11 4.85±0.10 180 2.30±0.10 2.97±0.08 340 3.28±0.10 5.07±0.09 200 2.46±0.10 3.35±0.07 360 3.32±0.11 5.28±0.09 220 2.55±0.09 3.98±0.07 380 3.52±0.12 5.57±0.10 240 2.67±0.09 4.17±0.08 -
[1] TAYLOR G I. The testing of materials at high rates of loading [J]. Journal of the ICE, 1946, 26(8): 486–519. [2] 胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.HU Shisheng, WANG Lili, SONG Li, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17. [3] CHEN W, LU F, FREW D J, et al. Dynamic compression testing of soft materials [J]. Journal of Applied Mechanics, 2002, 69(3): 214–223. [4] 卢芳云, CHEN W, FREW D J. 软材料的SHPB实验设计 [J]. 爆炸与冲击, 2002, 22(1): 15–19.LU Fangyun, CHEN W, FREW D J. A design of SHPB experiments for soft materials [J]. Explosion and Shock Waves, 2002, 22(1): 15–19. [5] SONG B, GE Y, CHEN W W, et al. Radial inertia effects in Kolsky bar testing of extra-soft specimens [J]. Experimental Mechanics, 2007, 47(5): 659–670. DOI: 10.1007/s11340-006-9017-5. [6] ZHAO H, GARY G, KLEPACZKO J R. On the use of a viscoelastic split Hopkinson pressure bar [J]. International Journal of Impact Engineering, 1997, 19(4): 319–330. DOI: 10.1016/s0734-743x(96)00038-3. [7] CHEN W, ZHANG B, FORRESTAL M J. A split Hopkinson bar technique for low-impedance materials [J]. Experimental Mechanics, 1999, 39(2): 81–85. DOI: 10.1007/BF02331109. [8] 林玉亮, 卢芳云, 卢力. 石英压电晶体在霍普金森压杆实验中的应用 [J]. 高压物理学报, 2006, 19(4): 299–304.LIN Yuliang, LU Fangyun, LU Li. The application of quartz transducer technique in SHPB [J]. Chinese Journal of High Pressure Physics, 2006, 19(4): 299–304. [9] 宋博, 姜锡权, 陈为农. 霍普金森压杆实验中的脉冲整形技术 [C] // 第三届全国爆炸力学实验技术交流会. 合肥: 2004. [10] SONG B, CHEN W. One-dimensional dynamic compressive behavior of EPDM rubber [J]. Journal of Engineering Materials and Technology, 2003, 125(3): 294–301. [11] 王宝珍, 胡时胜. 软质聚氨酯泡沫的冲击力学性能 [J]. 高分子材料科学与工程, 2009, 25(12): 48–51.WANG Baozhen, HU Shisheng. Mechanical properties of flexible polyurethane foams under impact loading [J]. Polymer Materials Science and Engineering, 2009, 25(12): 48–51. [12] SHARMA A, SHUKLA A, PROSSER R A. Mechanical characterization of soft materials using high speed photography and split Hopkinson pressure bar technique [J]. Journal of Materials Science, 2002, 37(5): 1005–1017. [13] 郭伟国, 赵融, 魏腾飞, 等. 用于Hopkinson压杆装置的电磁驱动技术 [J]. 实验力学, 2010(6): 682–689.GUO Weiguo, ZHAO Rong, WEI Tengfei, et al. Electromagnetic driving technique applied to split-Hopkinson pressure bar device [J]. Journal of Experimental Mechanics, 2010(6): 682–689. [14] LIU Zhanwei, CHEN Ximin, LV Xintao, et al. A mini desktop impact test system using multistage electromagnetic launch [J]. Measurement, 2014, 49: 68–76. [15] 刘战伟, 吕新涛, 陈喜民, 等. 基于多级电磁发射的mini-SHPB装置 [J]. 实验力学, 2013, 28(5): 557–562.LIU Zhanwei, LV Xintao, CHEN Ximin, et al. On the mini-SHPB device based on multi-level electromagnetic emissions [J]. Journal of Experimental Mechanics, 2013, 28(5): 557–562. [16] BACON C. An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar [J]. Experimental Mechanics, 1998, 38(4): 242–249. DOI: 10.1007/bf02410385. [17] 刘孝敏, 胡时胜, 陈智. 粘弹性Hopkinson压杆中波的衰减和弥散 [J]. 固体力学学报, 2002, 23(1): 81–86.LIU Xiaomin, HU Shisheng, CHEN Zhi. The wave propagation attenuation and dispersion in a viscoelastic Hopkinson pressure bar [J]. Acta Mechanica Solida Sinica, 2002, 23(1): 81–86. [18] YANG L M, SHIM V P W. An analysis of stress uniformity in split Hopkinson bar test specimens [J]. International Journal of Impact Engineering, 2005, 31(2): 129–150. DOI: 10.1016/j.ijimpeng.2003.09.002. [19] 王宝珍, 胡时胜. 猪后腿肌肉的冲击压缩特性实验 [J]. 爆炸与冲击, 2010, 30(1): 33–38. DOI: 10.11883/1001-1455(2010)01-0033-06.WANG Baozhen, HU Shisheng. Dynamic compression experiments of porcine ham muscle [J]. Explosion and Shock Waves, 2010, 30(1): 33–38. DOI: 10.11883/1001-1455(2010)01-0033-06. [20] GORHAM D A. Specimen inertia in high strain-rate compression [J]. Journal of Physics D: Applied Physics, 1989, 22(12): 1888–1893. DOI: 10.1088/0022-3727/22/12/014. [21] GORHAM D A. The effect of specimen dimensions on high strain rate compression measurements of copper [J]. Journal of Physics D: Applied Physics, 1991, 24(8): 1489–1492. DOI: 10.1088/0022-3727/24/8/041. 期刊类型引用(11)
1. 黄振贵,范浩伟,陈志华,周可,刘想炎,王浩. 空心弹高速入水机理及特性数值模拟研究. 爆炸与冲击. 2024(01): 117-131 . 本站查看
2. 张亮,胡常莉,吴小安. 超空泡航行体锥段结构对其尾拍运动影响的数值研究. 兵工学报. 2024(03): 828-836 . 百度学术
3. 刘喜燕,袁绪龙,罗凯,祁晓斌. 预置舵角对跨介质航行体入水尾拍运动影响试验. 兵工学报. 2023(06): 1632-1642 . 百度学术
4. 刘喜燕,袁绪龙,罗凯,祁晓斌,鲁娜. 带尾裙跨介质航行体高速斜入水实验研究. 爆炸与冲击. 2023(11): 108-120 . 本站查看
5. 王旭,吕续舰. 双球并联入水空化及运动特性实验研究. 振动与冲击. 2020(15): 221-229 . 百度学术
6. 侯夏伊,胡俊,于勇. 不同空化模型对附着空化的数值模拟与评价. 兵工学报. 2020(S1): 91-96 . 百度学术
7. 黄彪,黄瀚锐,刘涛涛,张孟杰,王国玉. 通气空泡流动特性研究现状及进展. 空气动力学学报. 2020(04): 724-745 . 百度学术
8. 黄海龙,王聪,余德磊,张鹤,卢佳兴. 高速射弹并联入水过程空泡演化特性试验. 哈尔滨工业大学学报. 2020(12): 15-20 . 百度学术
9. 肖海燕,罗松,朱珠,于勇. 高速射弹小角度入水弹道特性研究. 北京理工大学学报. 2019(08): 784-791 . 百度学术
10. 朱珠,罗松,卢丙举,于勇. 旋转射弹高速倾斜入水多相流场与弹道数值模拟. 爆炸与冲击. 2019(11): 69-79 . 本站查看
11. 黄彪,吴钦,王国玉. 非定常空化流动研究现状与进展. 排灌机械工程学报. 2018(01): 1-14 . 百度学术
其他类型引用(6)
-