Measurement of Hugoniot relation for unreacted JB-9014 explosive with reverse-impact method
-
摘要: 为了获得JB-9014未反应炸药的Hugoniot关系,在火炮加载平台上利用反向撞击技术对JB-9014炸药进行一维平面冲击实验。将JB-9014炸药样品作为飞片安装于弹托前表面,将镀膜氟化锂窗口作为装置靶。利用火炮加速弹托,使炸药样品以一定速度撞击镀膜氟化锂窗口,通过光子多普勒测速仪(photonic Doppler velocimetry,PDV)测量炸药样品击靶速度以及炸药/镀膜氟化锂窗口界面粒子速度。最终根据冲击波阵面守恒关系计算获得了JB-9014炸药冲击Hugoniot数据,采用正交回归直线拟合得到了炸药样品在3.1~8.2 GPa压力范围内的冲击Hugoniot关系:Ds=2.417+2.140us (Ds和us的单位均为km/s)。结果表明:该方法测试精度较高,响应时间快(小于5 ns),同时该方法可以对炸药的反应情况进行检测,便于判断实验是否测得真实的未反应炸药冲击Hugoniot数据。
-
关键词:
- JB-9014炸药 /
- Hugoniot关系 /
- 反向撞击 /
- 光子多普勒测速仪(PDV) /
- 粒子速度
Abstract: In order to obtain the Hugoniot relation of unreacted JB-9014 explosive, one-dimensional plane impact experiments of the JB-9014 explosive were completed on a gun by using the reverse-impact method. The JB-9014 explosive sample was mounted on the front surface of the sabot as a flyer. The LiF window was taken as a device target. The sabot was accelerated to a certain speed by the gun and then the explosive sample impacted the LiF window. The impact velocity of the flyer and the particle velocity at the sample/window interface were measured by a photonic Doppler velocimetry (PDV). The Hugoniot data was obtained according to the conservation of the shock. The Hugoniot relationship of the JB-9014 explosive sample within the pressure range of 3.1−8.2 GPa was established by using the least square method. The results show that reverse-impact method has the characteristics of high accuracy and fast response time (<5 ns). In addition, the reverse-impact method can be used to detect the reaction degree of the JB-9014 explosive, which can be applied to judge whether the real Hugoniot data of the unreacted explosive is measured in the experiment. -
表 1 实验测试结果
Table 1. Experimental results
实验编号 ρ/(g·cm−3) W/(km·s−1) uw/(km·s−1) us/(km·s−1) Ds/(km·s−1) p/GPa Shot 1 1.883 0.696 0.216 0.480 3.433 3.119 Shot 2 1.889 0.918 0.300 0.618 3.788 4.422 Shot 3 1.893 1.173 0.394 0.779 4.028 5.941 Shot 4 1.891 1.490 0.527 0.963 4.501 8.196 -
[1] 经福谦.实验物态方程导引[M]. 2版.北京: 科学出版社, 1999: 197−198. [2] 李维新.一维不定常流与冲击波[M]. 北京: 国防工业出版社, 2003: 212−213. [3] DICK J J, FOREST C A, RAMSAY J B, et al. The Hugoniot and shock sensitivity of plastic-boned TATB explosive PBX-9502 [J]. Journal of Applied Physics, 1988, 63(10): 4881–4888. DOI: 10.1063/1.340428. [4] COLEBURN N L, LIDDIARD T P. Hugoniot equations of state of several unreacted explosive [J]. Journal of Chemical Physics, 1966, 44(10): 1929–1936. DOI: 10.1063/1.1726963. [5] 于川, 池家春, 刘文翰, 等. JB-9001钝感炸药Hugoniot关系测试 [J]. 高压物理学报, 1998, 12(1): 72–77. DOI: 10.11858/gywlxb.1998.01.012.YU Chuan, CHI Jiachun, LIU Wenhan, et al. Shock Hugoniot relation of JB-9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 1998, 12(1): 72–77. DOI: 10.11858/gywlxb.1998.01.012. [6] 张旭, 池家春, 冯民贤, 等. JB9014钝感炸药冲击绝热线测量 [J]. 高压物理学报, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011.ZHANG Xu, CHI Jiachun, FENG Minxian, et al. Hugoniot relation of JB9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011. [7] FU Hua, LI Tao, TAN Duowang. Shock Hugoniot relation of unreacted heterogeneous explosive [J]. International Journal of Modern Physics B, 2011, 25(21): 2905–2913. DOI: 10.1142/S0217979211100527. [8] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Measurement of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX9502: Wave forms embedded gauges and comparison of four different material lots [J]. Journal of Applied Physics, 2006, 99(11): 1–17. DOI: 10.1063/1.2195191. [9] DICK J J, MARTINEZ A R, HIXSON R S. Plane impact response of PBX-9501 and its components below 2 GPa: LA-13426-MS [R]. Los Alamos National Laboratory, 1998. DOI: 10.2172/663187. [10] SHEFFIELD S A, GUSTAVSEN R L, ALCON R R. Hugoniot and initiation measurement on TANZ explosive: LA-UR-95-2765 [R]. 1995. DOI: 10.1063/1.50842. [11] SHEFFIELD S A, GUSTAVSEN R L, ALCON R R, et al. High pressure Hugoniot and reaction rate measurements in PBX-9501 [C] // Shock Compress of Condensed Matter-2003. US: American Institute of Physics, 2004, 706: 1033−1036. DOI: 10.1063/1.1780414. [12] MILLETT J C F, BOURNE N K. The shock Hugoniot of a plastic bonded explosive and inert simulants [J]. Journal of Physics D: Applied Physics, 2004, 37(18): 2613–2617. DOI: 10.1088/0022-3727/37/18/018. [13] MILNE A, LONGBOTTOM A, BOURNE N, et al. On the unreacted Hugoniots of three plastic bonded explosives [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(1): 68–72. DOI: 10.1002/prep.200700009. [14] STRAND O T, GOOSMAN D R, MARTINEZ C, et al. Compact system for high-speed velocimetry using heterodyne techniques [J]. Review of Scientific Instruments, 2006, 77(8): 083108–083108. doi: 10.1063/1.2336749 [15] FERGUSON J W, TAYLOR P. Application of heterodyne velocimetry and pyrometry as diagnostics for explosive characterization [J]. Journal of Physics: Conference Series, 2014, 500(14). DOI: 10.1088/1742-6596/500/14/142014. [16] 谭叶, 俞宇颖, 戴诚达, 等. 反向碰撞法测量Bi的低压Hugoniot数据 [J]. 物理学报, 2001, 60(10): 106401. DOI: 10.7498/aps.60.106401.TAN Ye, YU Yuying, DAI Chengda, et al. Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry [J]. Acta Physica Sinica, 2001, 60(10): 106401. DOI: 10.7498/aps.60.106401. [17] 赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010.ZHAO Wanguang, ZHOU Xianming, LI Jiabo, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010.