激波管聚酯膜片变形过程分析

何起光 张伟 陈小伟 徐剑鹏

何起光, 张伟, 陈小伟, 徐剑鹏. 激波管聚酯膜片变形过程分析[J]. 爆炸与冲击, 2019, 39(3): 033201. doi: 10.11883/bzycj-2017-0409
引用本文: 何起光, 张伟, 陈小伟, 徐剑鹏. 激波管聚酯膜片变形过程分析[J]. 爆炸与冲击, 2019, 39(3): 033201. doi: 10.11883/bzycj-2017-0409
HE Qiguang, ZHANG Wei, CHEN Xiaowei, XU Jianpeng. Analysis on the deformation process of PET shock tube diaphragm[J]. Explosion And Shock Waves, 2019, 39(3): 033201. doi: 10.11883/bzycj-2017-0409
Citation: HE Qiguang, ZHANG Wei, CHEN Xiaowei, XU Jianpeng. Analysis on the deformation process of PET shock tube diaphragm[J]. Explosion And Shock Waves, 2019, 39(3): 033201. doi: 10.11883/bzycj-2017-0409

激波管聚酯膜片变形过程分析

doi: 10.11883/bzycj-2017-0409
基金项目: 国家自然科学基金(11627901)
详细信息
    作者简介:

    何起光(1994- ),男,硕士,478440913@qq.com

    通讯作者:

    张 伟(1964- ),男,博士,教授,zhdawei@hit.edu.cn

  • 中图分类号: O347.5; O354

Analysis on the deformation process of PET shock tube diaphragm

  • 摘要: 使用聚酯薄膜作为激波管膜片,通过施加不同压力的激波管实验,获得了膜片厚度及多张膜片的组合方式对膜片所能承受最大压力的影响。利用高速相机对激波管膜片从开始变形到破坏的全过程进行拍摄,使用三维DIC软件获得膜片在变形过程中的位移场。实验发现了膜片会出现圆弧反翘并快速破坏的特别现象,并以此为特征将变形过程分为2个阶段。给出任意厚度膜片第1阶段圆弧变形的数学规律及第2阶段圆弧反翘的形状特征,以及全过程中膜片厚度变化的数学规律。
  • 图  1  实验装置示意图及照片

    Figure  1.  Schematic diagram and photo of experimental equipment

    图  2  膜片的应力应变曲线

    Figure  2.  Stress-strain curves of the diaphragm

    图  3  不同厚度及组合方式的膜片的破坏压力

    Figure  3.  Maximum bearing pressure of diaphragm with different thickness and combination

    图  4  三种厚度的膜片在不同压力条件下的变形

    Figure  4.  Deformation of diaphragms with three different thicknesses under different pressures

    图  5  DIC处理后所得不同压力条件下0.2 mm厚膜片变形的典型结果

    Figure  5.  Deformation of diaphragm with 0.2 mm in thickness by 3D-DIC analysis

    图  6  三种不同厚度膜片的变形轮廓曲线

    Figure  6.  Profiles of deformation of diaphragms with different thicknesses

    图  7  膜片中心挠度与压力曲线

    Figure  7.  Relation between maximum deflection of diaphragm and pressure

    图  8  膜片厚度减小量的分布曲线

    Figure  8.  Distribution curves of thickness reduction

    图  9  膜片中心的厚度减小量与压力曲线

    Figure  9.  Relation between maximum thickness reduction of diaphragm and pressure

    图  10  模型计算所得曲线与实验结果的对比

    Figure  10.  Contrast of deflection and radius between experiment and calculation

    图  11  模型计算所得膜片厚度变化与实验结果的对比

    Figure  11.  Contrast of thickness between experiment and calculation

    表  1  不同膜片组合及厚度的最大破坏压力

    Table  1.   The maximum bearing pressure of different diaphragms thickness and combinations

    膜片使用数量总厚度/mm最大破坏压力/MPa膜片使用数量总厚度/mm最大破坏压力/MPa
    0.05 mm0.1 mm0.2 mm0.05 mm0.1 mm0.2 mm
    1000.050.3114210.63.446
    2000.10.6260030.63.344
    0100.10.5660040.84.411
    4000.21.18140415.568
    0200.21.21402415.514
    0010.21.08900515.524
    4010.42.2444241.26.632
    0210.42.2920061.26.659
    0400.42.417
    下载: 导出CSV

    表  2  三种不同厚度膜片临界点的数据

    Table  2.   Data of critical point in diaphragm with three different thickness

    临界点厚度/mm压力/MPa挠度/mm平均挠度/mmk'/(GPa·m−1)\small$\overline {k{\rm{'}}} $/(GPa·m−1)
    Q10.050.27122.8122.845.425.440
    Q20.10.54522.955.45
    Q30.21.08 22.755.45
    Q1*0.050.27826.0226.475.565.563
    Q2*0.10.55726.015.56
    Q3*0.21.11427.435.57
    下载: 导出CSV
  • [1] 韩肇元, 王震球, 尹协振, 等. 用于研究双波迎面相互作用的电控双驱动激波管实验技术 [J]. 力学学报, 1982, 18(4): 86–92 doi: 10.6052/0459-1879-1982-4-1982-047

    HAN Zhaoyuan, WANG Zhengqiu, YIN Xiezhen, et al. An experimental technique of electrical controlled double driver shock tube for studying head-on moving shock-bow shock interaction [J]. Chinese Journal of Theoretical and Applied Mechanics, 1982, 18(4): 86–92 doi: 10.6052/0459-1879-1982-4-1982-047
    [2] 黄文斌, 谭多望, 闫石, 等. 电破膜式激波管的破膜装置: CN201859050U [P]. 2011-02-16.
    [3] NGUYEN T T N, WILGEROTH J M, PROUD W G. Controlling blast wave generation in a shock tube for biological applications [C]// Journal of Physics: Conference Series, 2014. DOI: 10.1088/1742-6596/500/14/142025.
    [4] GHARABABAEI H, DARVIZEH A. Experimental and analytical investigation of large deformation of thin circular plates subjected to localized and uniform impulsive loading [J]. Mechanics Based Design of Structures & Machines, 2010, 38(2): 171–189. doi: 10.1080/15397730903554633
    [5] BRADLEY J N, LINDSAY R B. Shock waves in chemistry and physics [J]. Physics Today, 1963, 16(8): 60. doi: 10.1063/1.3051077
    [6] BARSOUM I, FALESKOG J. Rupture mechanisms in combined tension and shear—experiments [J]. International Journal of Solids & Structures, 2007, 44(6): 1768–1786. doi: 10.1016/j.ijsolstr.2006.09.031
    [7] ROTHKOPF E M. Diaphragm opening process in shock tubes [J]. Physics of Fluids, 1974, 17(6): 1169–1173. doi: 10.1063/1.1694860
    [8] CAMPBELL G A, KIMBER G M, NAPIER D H. Bursting of diaphragms as related to the operation of shock tubes [J]. Journal of Scientific Instruments, 1965, 42(6): 381. doi: 10.1088/0950-7671/42/6/303
    [9] 佟富强, 刘宝璋. 聚酯(PET)薄膜形变性能的研究 [J]. 包装工程, 1997(1): 26–28

    TONG Fuqiang, LIU Baozhang, ZHANG Jinlong, et al. Study on the deforming properties of the PET film [J]. Packaging Engineering, 1997(1): 26–28
    [10] 黄官强, 鞠开阳, 朱强, 等. PET膜片压力胀型失效试验与有限元分析 [J]. 现代制造工程, 2015(10): 88–92 doi: 10.3969/j.issn.1671-3133.2015.10.020

    HUANG Guanqiang, JU Kaiyang, ZHU Qiang, et al. Experiment and finite element analysis of pressure bulging for PET film [J]. Modern Manufacturing Engineering, 2015(10): 88–92 doi: 10.3969/j.issn.1671-3133.2015.10.020
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  5643
  • HTML全文浏览量:  1878
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-10
  • 修回日期:  2018-05-07
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回