柱状含铝炸药水下爆炸近场的特征线法研究

李晓杰 杨晨琛 闫鸿浩 王小红 王宇新 张程娇

李晓杰, 杨晨琛, 闫鸿浩, 王小红, 王宇新, 张程娇. 柱状含铝炸药水下爆炸近场的特征线法研究[J]. 爆炸与冲击, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412
引用本文: 李晓杰, 杨晨琛, 闫鸿浩, 王小红, 王宇新, 张程娇. 柱状含铝炸药水下爆炸近场的特征线法研究[J]. 爆炸与冲击, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412
LI Xiaojie, YANG Chenchen, YAN Honghao, WANG Xiaohong, WANG Yuxin, ZHANG Chengjiao. Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics[J]. Explosion And Shock Waves, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412
Citation: LI Xiaojie, YANG Chenchen, YAN Honghao, WANG Xiaohong, WANG Yuxin, ZHANG Chengjiao. Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics[J]. Explosion And Shock Waves, 2019, 39(2): 022301. doi: 10.11883/bzycj-2017-0412

柱状含铝炸药水下爆炸近场的特征线法研究

doi: 10.11883/bzycj-2017-0412
基金项目: 

国家自然科学基金项目 11272081

国家自然科学基金项目 11672067

详细信息
    作者简介:

    李晓杰(1963-), 男, 博士, 教授, 博士生导师, dalian03@qq.com

  • 中图分类号: O381

Numerical study of near-field underwater explosion of cylindrical aluminized explosive by the method of characteristics

  • 摘要: 基于之前提出的一种含熵变项的特征线法,通过控制非等熵流中的能量释放来刻画铝粉燃烧的影响,结合简单Chapman-Jouguet模型和JWL-Miller状态方程,计算了柱形含铝炸药水下爆炸的近场参数。对比模拟结果与实验数据,发现这种特征线法可以较好地预测近场冲击波的传播迹线、爆轰产物的膨胀轨迹以及内部压缩波的反射过程。结果表明,这种特征线法可用于含铝炸药水下爆炸的近场计算,进一步可用于评估含铝炸药性能或计算水下能量输出。
  • 图  1  柱状含铝炸药水下爆炸定常模型

    Figure  1.  The steady model for underwater explosion of cylindrical aluminized explosive

    图  2  水下冲击波的传播迹线以及爆轰产物的气泡膨胀

    Figure  2.  Trajectories of underwater shock wave and bubble expansion of detonation product

    图  3  含铝炸药在不同装药直径时的水气界面迹线和已反应铝分数

    Figure  3.  Bubble expansion and reacted Al fraction of aluminized explosive with different charge diameters

    图  4  轴线、水气边界、冲击波3处压力的相对增幅

    Figure  4.  Relative increment of the pressure at axis, interface and shockwave

    图  5  特征线网格上的近场冲击波与爆轰产物膨胀的关系

    Figure  5.  Connections between near-field shock and detonation products expansion on characteristic net

  • [1] 陈朗.含铝炸药爆轰[M].北京:国防工业出版社, 2004:11-17.
    [2] 刘建湖.舰船非接触水下爆炸动力学的理论与应用[D].无锡: 中国船舶科学研究中心, 2002: 2-32. http://cdmd.cnki.com.cn/Article/CDMD-86205-2002091208.htm
    [3] 陈朗, 冯长根, 黄毅民.含铝炸药圆筒试验及爆轰产物JWL状态方程研究[J].火炸药学报, 2001, 24(3):13-15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.

    CHEN Lang, FENG Changgen, HUANG Yimin. The cylinder test and jwl equation of state detontion product of aluminized explosives[J]. Chinese Journal of Explosives and Propellants, 2001, 24(3):13-15. DOI: 10.3969/j.issn.1007-7812.2001.03.005.
    [4] 冯晓军, 王晓峰, 李媛媛, 等.铝粉粒度和爆炸环境对含铝炸药爆炸能量的影响[J].火炸药学报, 2013, 36(6):24-27. DOI: 10.3969/j.issn.1007-7812.2013.06.004.

    FENG Xiaojun, WANG Xiaofeng, LI Yuanyuan, et al. Effect of aluminum particle size and explosion atmosphere on the energy of explosion of aluminized explosive[J]. Chinese Journal of Explosives and Propellants, 2013, 36(6):24-27. DOI: 10.3969/j.issn.1007-7812.2013.06.004.
    [5] KEICHER T, HAPP A, KRETSCHMER A, et al. Influence of aluminium/ammonium perchlorate on the performance of underwater explosives[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(3):140-143. DOI: 10.1002/(SICI)1521-4087(199906)24:033.0.CO;2-3
    [6] KUMAR A S, RAO V B, SINHA R K, et al. Evaluation of plastic bonded explosive (PBX) formulations based on RDX, aluminum, and HTPB for underwater applications[J]. Propellants, Explosives, Pyrotechnics, 2010, 35(4):359-364. DOI: 10.1002/prep.200800048.
    [7] ZHANG F, ANDERSON J, YOSHINAKA A. Post-detonation energy release from tnt-aluminum explosives[C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, 2007: 885-888. DOI: 10.1063/1.2833268.
    [8] 蒋小华, 龙新平, 何碧, 等.有氧化剂(AP)含铝炸药的爆轰性能[J].爆炸与冲击, 2005, 25(1):26-30. DOI: 10.3321/j.issn:1001-1455.2005.01.005.

    JIANG Xiaohua, LONG Xinping, HE Bi, et al. Numerical simulation of detonation in aluminized explosives containing oxidiser (AP)[J]. Explosion and Shock Waves, 2005, 25(1):26-30. DOI: 10.3321/j.issn:1001-1455.2005.01.005.
    [9] 胡栋, 孙珠妹.铝粉颗粒度对黑索金含铝炸药粉快速反应影响的微观特性研究[J].爆炸与冲击, 1995, 15(2):122-128. http://www.bzycj.cn/article/id/10565

    HU Dong, SUN Zhumei. Studies on the micro-behaviour of the influence of the aluminum particle size on the high speed reaction for RDX powder containing aluminum[J]. Explosion and Shock Waves, 1995, 15(2):122-128. http://www.bzycj.cn/article/id/10565
    [10] 陈朗, 张寿齐, 赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究[J].爆炸与冲击, 1999, 19(3):250-255. DOI: 10.3321/j.issn:1001-1455.1999.03.010.

    CHEN Lang, ZHANG Shouqi, ZHAO Yuhua. Study of the metal acceleration capacities of aluminized explosives with spherical aluminum particles of different diameter[J]. Explosion and Shock Waves, 1999, 19(3):250-255. DOI: 10.3321/j.issn:1001-1455.1999.03.010.
    [11] 韩勇, 黄辉, 黄毅民, 等.不同直径含铝炸药的作功能力[J].火炸药学报, 2008, 31(6):5-7. DOI: 10.3969/j.issn.1007-7812.2008.06.002.

    HAN Yong, HUANG Hui, HUANG Yimin, et al. Power of aluminized explosives with different diameters[J]. Chinese Journal of Explosives and Propellants, 2008, 31(6):5-7.DOI: 10.3969/j.issn.1007-7812.2008.06.002.
    [12] 计冬奎, 高修柱, 肖川, 等.含铝炸药作功能力和JWL状态方程尺寸效应研究[J].兵工学报, 2012, 31(5):552-555. http://d.old.wanfangdata.com.cn/Periodical/bgxb201205007

    JI Dongkui, GAO Xiuzhu, XIAO Chuan, et al. Study on dimension effect of accelerating ability and JWL equation of state for aluminized explosive[J]. Acta Armamentarii, 2012, 31(5):552-555. http://d.old.wanfangdata.com.cn/Periodical/bgxb201205007
    [13] 周霖, 徐更光.含铝炸药水中爆炸能量输出结构[J].火炸药学报, 2003, 26(1):30-32. DOI:0.3969/j.issn.1007-7812.2003.01.009.

    ZHOU Lin, XU Gengguang. Configuration of underwater energy output for aluminized explosive mixtures[J]. Chinese Journal of Explosives and Propellants, 2003, 26(1):30-32. DOI: 10.3969/j.issn.1007-7812.2003.01.009.
    [14] 赵继波, 李金河, 谭多望, 等.铝氧比对水中爆炸近场冲击波的影响[J].含能材料, 2009, 17(4):420-423. DOI: 10.3969/j.issn.1006-9941.2009.04.011.

    ZHAO Jibo, LI Jinhe, TAN Duowang, et al. Effects of ratios of aluminum to oxygen on shock wave of cylindrical charge at underwater explosive close-field[J]. Chinese Journal of Energetic Materials, 2009, 17(4):420-423. DOI: 10.3969/j.issn.1006-9941.2009.04.011.
    [15] 林谋金, 马宏昊, 沈兆武, 等.RDX基铝薄膜炸药与铝粉炸药水下爆炸性能比较[J].化工学报, 2014, 65(2):752-758. DOI: 10.3969/j.issn.0438-1157.2014.02.054.

    LIN Moujin, MA Honghao, SHEN Zhaowu, et al. Difference in underwater detonation between RDX based aluminum film and aluminum particle explosives[J]. Journal of Chemical Industry and Engineering (China), 2014, 65(2):752-758. DOI: 10.3969/j.issn.0438-1157.2014.02.054.
    [16] 胡宏伟, 严家佳, 陈朗, 等.铝粉含量和粒度对CL-20含铝炸药水中爆炸反应特性的影响[J].爆炸与冲击, 2017, 37(1):157-161. DOI: 10.11883/1001-1455(2017)01-0157-05.

    HU Hongwei, YAN Jiajia, CHEN Lang, et al. Effect of aluminum powder content and its particle size on reaction characteristics for underwater explosion of CL-20-based explosives containing aluminum[J]. Explosion and Shock Waves, 2017, 37(1):157-161. DOI: 10.11883/1001-1455(2017)01-0157-05.
    [17] HOWARD W M, FRIED L E, SOUERS P C. Kinetic modeling of non-ideal explosives with CHEETAH[C]//The Eleventh International Symposium on Detonation. Snowmass, Colorado, USA: Lawrence Livermore National Laboratory, 1998: 998-1006.
    [18] LEE J, KUK J H, CHO Y S, et al. Numerical modeling of underwater explosion properties for an aluminized explosive[J]. Propellants, Explosives, Pyrotechnics, 1997, 22(6):337-346. DOI: 10.1002/prep.19970220608.
    [19] LEE E L, TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980, 23(12):2362-2372. DOI: 10.1063/1.862940.
    [20] MILLER P J, GUIRGUIS R H. Experimental study and model calculations of metal combustion in al/ap underwater explosives[J]. MRS Online Proceedings Library Archive, 1992:296-299. DOI: 10.1557/PROC-296-299.
    [21] LU J P, KENNEDY D L. Modelling of PBXW-115 using Kinetic CHEETAH and the DYNA codes: DSTO-TR-1496[R]. Australia: Defence Science and Technology Organisation(DSTO), 2003.
    [22] 辛春亮, 徐更光, 刘科种, 等.含铝炸药Miller能量释放模型的应用[J].含能材料, 2008, 16(4):436-440. DOI: 10.3969/j.issn.1006-9941.2008.04.018.

    XIN Chunliang, XU Gengguang, LIU Kezhong, et al. Application of miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(4):436-440. DOI: 10.3969/j.issn.1006-9941.2008.04.018.
    [23] 荣吉利, 项大林, 李健, 等.含铝炸药水下爆炸特性研究[J].北京理工大学学报, 2012, 32(3):221-225. DOI: 10.3969/j.issn.1001-0645.2012.03.001.

    RONG Jili, XIANG Dalin, LI Jian, et al. Study on underwater explosion character of aluminized explosive[J]. Transactions of Beijing Institute of Technology, 2012, 32(3):221-225. DOI: 10.3969/j.issn.1001-0645.2012.03.001.
    [24] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 7(2):439-471. DOI: 10.1016/0021-9991(88)90177-5.
    [25] YANG H Q, PRZEKWAS A J. A comparative study of advanced shock-capturing shcemes applied to Burgers' equation[J]. Journal of Computational Physics, 1992, 102(1):139-159. DOI: 10.1016/S0021-9991(05)80012-9.
    [26] LI X J, ZHANG C C, WANG X H, et al. Numerical study of underwater shock wave by a modified method of characteristics[J]. Journal of Applied Physics, 2014, 115(10):104905. DOI: 10.1063/1.4868360.
    [27] 李晓杰, 张程娇, 闫鸿浩, 等.水下爆炸近场非均熵流的特征线差分解法[J].爆炸与冲击, 2012, 32(6):604-608. DOI: 10.3969/j.issn.1001-1455.2012.06.008.

    LI Xiaojie, ZHANG Chengjiao, YAN Honghao, et al. Difference method of characteristics in isentropic flow of underwater explosion in near-field region[J]. Explosion and Shock Waves, 2012, 32(6):604-608. DOI: 10.3969/j.issn.1001-1455.2012.06.008.
    [28] 李晓杰, 杨晨琛, 张程娇, 等.水下爆炸非均熵二维定常流的三族特征线解法[J].爆炸与冲击, 2018, 38(4):847-853. DOI: 10.11883/bzycj-2016-0314.

    LI Xiaojie, YANG Chenchen, ZHANG Chengjiao, et al. A FDM of three characteristic lines of two-dimensional non-isentropic steady flow of cylindrical explosive underwater explosion[J]. Explosion and Shock Waves, 2018, 38(4):847-853. DOI: 10.11883/bzycj-2016-0314.
    [29] STEBNOVSKⅡ S V, CHERNOBAEV N N. Initial stage of an underwater explosion of cylindrical charges with foliated cases[J]. Combustion, Explosion and Shock Waves, 1982, 18(3):358-362. DOI: 10.1007/BF00783052.
    [30] YANG C C, Li X J, Zhang C J. Numerical study of two-dimensional cylindrical underwater explosion by a modified method of characteristics[J]. Journal of Applied Physics, 2017, 122(10):105903. DOI: 10.1063/1.4986881.
    [31] 高执棣.化学热力学基础[M].北京:北京大学出版社, 2006.
    [32] 陈朗, 冯长根, 赵玉华, 等.含铝炸药爆轰数值模拟研究[J].北京理工大学学报, 2001, 21(4):415-419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.

    CHEN Lang, FENG Changgen, ZHAO Yuhua, et al. Numerical simulations of the detonation of aluminized explosives[J]. Transactions of Beijing Institute of Technology, 2001, 21(4):415-419. DOI: 10.3969/j.issn.1001-0645.2001.04.003.
    [33] 裴红波, 聂建新, 覃剑峰.基于非平衡多相模型的含铝炸药爆速研究[J].爆炸与冲击, 2013, 33(3):311-314. DOI: 10.3969/j.issn.1001-1455.2013.03.015.

    PEI Hongbo, NIE Jianxin, QIN Jianfeng. Investigation on detonation velocity of aluminized explosives based on disequilibrium multiphase model[J]. Explosion and Shock Waves, 2013, 33(3):311-314. DOI: 10.3969/j.issn.1001-1455.2013.03.015.
    [34] TARVER C M, TAO W C, LEE C G. Sideways plate push test for detonating solid explosives[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(5):238-246. DOI: 10.1002/prep.19960210506.
    [35] 沈飞, 王辉, 袁建飞, 等.含铝炸药水下滑移爆轰实验研究[J].实验力学, 2014, 29(5):641-646. DOI: 10.7520/1001-4888-13-202.

    SHEN Fei, WANG Hui, YUAN Jianfei, et al. Experimental study of underwater sliding detonation of aluminized explosives[J]. Journal of Experimental Mechanics, 2014, 29(5):641-646. DOI: 10.7520/1001-4888-13-202.
    [36] AUTODYNA: interactive non-linear dynamic analysis software version 13: user's manual[M]. SAS IP Inc., 2010.
  • 加载中
图(5)
计量
  • 文章访问数:  6869
  • HTML全文浏览量:  2521
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-12
  • 修回日期:  2018-01-31
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回