头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型

邓佳杰 张先锋 刘闯 王文杰 徐晨阳

邓佳杰, 张先锋, 刘闯, 王文杰, 徐晨阳. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型[J]. 爆炸与冲击, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413
引用本文: 邓佳杰, 张先锋, 刘闯, 王文杰, 徐晨阳. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型[J]. 爆炸与冲击, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413
DENG Jiajie, ZHANG Xianfeng, LIU Chuang, WANG Wenjie, XU Chenyang. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413
Citation: DENG Jiajie, ZHANG Xianfeng, LIU Chuang, WANG Wenjie, XU Chenyang. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413

头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型

doi: 10.11883/bzycj-2017-0413
基金项目: 

国家自然科学基金项目 U1730101

中组部青年拔尖人才支持计划 2014

武器装备预研基金项目 6140657010116BQ02001

详细信息
    作者简介:

    邓佳杰(1990-), 男, 博士研究生

    通讯作者:

    张先锋, lynx@njust.edu.cn

  • 中图分类号: O385

Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target

  • 摘要: 在综合考虑弹体结构稳定性及截面比动能的前提下, 提出一种介于尖卵形弹体及尖锥形弹体间的头部对称刻槽弹体, 以期达到提高侵彻深度的目的。以尖卵形弹体侵彻深度为基准, 开展头部对称刻槽弹体侵彻半无限厚铝合金靶实验。在此基础上, 推导得到可描述头部对称刻槽弹体侵彻2A12铝合金靶过程的局部相互作用模型。同时, 结合头部对称刻槽弹体侵彻后靶体破坏现象, 提出适用于头部对称刻槽弹体的靶体响应力, 进而确立头部对称刻槽弹体的侵彻深度模型。实验结果与理论计算表明, 头部对称刻槽弹体具有相对于尖卵形弹体更好的侵彻能力。头部对称刻槽弹体侵彻深度提高的原因是弹体头部结构截面比动能增加及其侵彻过程中的靶体弱化效应, 其中弱化效应是侵彻深度提高的主控因素。
  • 图  1  尖卵形弹体和头部对称刻槽弹体结构工程图

    Figure  1.  Schemes of ogive-nose projectile and symmetrical grooved-nose projectile

    图  2  尖卵形弹体和头部对称刻槽弹体实物图

    Figure  2.  Photograph of ogive-nose projectile and symmetrical grooved-nose projectile

    图  3  侵彻实验布局

    Figure  3.  Sketch of projectile penetration test

    图  4  侵彻深度实验结果及其二次多项式拟合曲线

    Figure  4.  Experimental data and fitting curves of penetration depth

    图  5  回收弹体情况

    Projectiles after penetration tests

    图  6  侵彻后靶体破坏情况

    Figure  6.  Damages of targets after penetration tests

    图  7  侵彻后靶体材料挤出现象

    Figure  7.  Phenomenon of target material extrusion

    图  8  笛卡尔坐标系下头部对称刻槽弹体结构示意图

    Figure  8.  Schematic diagram of symmetrical grooved-nose projectile in Cartesian coordinate

    图  9  头部对称刻槽弹体剖面示意图

    Figure  9.  Sectional view of symmetrical grooved-nose projectile

    图  10  对称槽区域的靶体裂纹示意图

    Figure  10.  Crack of symmetrical grooved-nose area

    图  11  理论计算与实验侵彻深度结果对比

    Figure  11.  Comparison of penetration depth between theoretical and experimental results

    表  1  尖卵形弹体和头部对称刻槽弹体侵彻深度实验对比

    Table  1.   Experiment data of DOP between ogive-nose projectile and symmetrical grooved-nose projectile

    实验号 尖卵形弹体 头部对称刻槽弹体
    侵彻速度v0/(m·s-1) 质量m/g 侵彻深度P/mm 侵彻速度v0/(m·s-1) 质量m/g 侵彻深度P/mm
    1 417 65.5 35.6 373 66.3 36.2
    2 501 66.3 41.2 453 66.0 45.1
    3 615 66.4 59.8 615 66.3 67.2
    4 676 65.7 63.5 648 66.2 71.2
    5 719 65.6 73.0 691 66.4 79.2
    6 742 65.6 77.8 745 66.0 89.0
    7 793 65.9 86.4 768 65.7 95.2
    下载: 导出CSV
  • [1] YANKELEVSKY D Z, GLUCK J.Nose shape effect on high velocity soil penetration[J].International Journal of Mechanical Sciences, 1980, 22(5):297-311.DOI: 10.1016/0020-7403(80)90030-2.
    [2] JONES S E, RULE W K.On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J].International Journal of Impact Engineering, 2000, 24(4):403-415.DOI: 10.1016/S0734-743X(99)00157-8.
    [3] CHEN X W, LI Q M.Deep penetration of a non-deformable projectile with different geometrical characteristics[J].International Journal of Impact Engineering, 2002, 27(6):619-637.DOI: 10.1016/S0734-743X(02)00005-2.
    [4] LI Q M, CHEN X W.Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J].International Journal of Impact Engineering, 2003, 28(1):93-116.DOI: 10.1016/S0734-743X(02)00037-4.
    [5] ZHAO J, CHEN X W, JIN F N, et al.Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J].International Journal of Impact Engineering, 2010, 37(9):971-979.DOI: 10.1016/j.ijimpeng.2010.03.008.
    [6] 刘坚成, 黄风雷, 皮爱国, 等.异型头部弹体增强侵彻性能机理研究[J].爆炸与冲击, 2014, 34(4):409-414.DOI: 10.11883/1001-1455(2014)04-0409-06.

    LIU Jiancheng, HUANG Fenglei, PI Aiguo, et al.On enhanced penetration performance of modified nose projectiles[J].Explosion and Shock Waves, 2014, 34(4):409-414.DOI: 10.11883/1001-1455(2014)04-0409-06.
    [7] LIU J, PI A, HUANG F.Penetration performance of double-ogive-nose projectiles[J].International Journal of Impact Engineering, 2015, 84:13-23.DOI: 10.1016/j.ijimpeng.2015.05.003.
    [8] BEN-DOR G, DUBINSKY A, ELPERIN T.Applied high-speed plate penetration dynamics[M].Netherlands:Springer, 2006:111-137.
    [9] BEN-DOR G, DUBINSKY A, ELPERIN T.High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields[J].Mechanics Based Design of Structures and Machines, 2009, 37(4):538-549.DOI: 10.1080/15397730903272830.
    [10] MAYERSAK J.Kinetic energy cavity penetrator weapon: U.S.Patent 20040231552[P].2003-05-23.
    [11] 柴传国.异形头部弹体对混凝土靶的侵彻效应研究[D].北京: 北京理工大学, 2014: 13-66.
    [12] YAKUNINA G Y.The three-dimensional motion of optimal pyramidal bodies[J].Journal of Applied Mathematics and Mechanics, 2005, 69(2):234-243.DOI: 10.1016/j.jappmathmech.2005.03.009.
    [13] YAKUNINA G Y.Optimum three-dimensional hypersonic bodies within the framework of a local interaction model[C]//International Space Planes and Hypersonic Systems and Technologies Conference.Kyoto, Japan, 2001.
    [14] YAKUNNA G Y.Effects of sliding friction on the optimal 3D-nose geometry of rigid rods penetrating media[J].Optimization and Engineering, 2005, 6(3):315-338.DOI: 10.1007/s11081-005-1742-6.
    [15] 范少博, 陈智刚, 侯秀成, 等.旋进侵彻弹丸数值模拟与试验研究[J].弹箭与制导学报, 2013(1):80-83.DOI: 10.15892/j.cnki.djzdxb.2013.01.041.

    FAN Shaobo, CHEN Zhigang, HOU Xiucheng, et al.Numerical simulation and experimental study on novel rotating penetration projectile[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2013(1):80-83.DOI: 10.15892/j.cnki.djzdxb.2013.01.041.
    [16] ERENGIL M E, CARGILE D J.Advanced projectile concept for high speed penetration of concrete targets[C]//Proceedings of 20th International Symposium on Ballistics.Orlando, 2002.
    [17] 梁斌, 陈小伟, 姬永强, 等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击, 2008, 28(1):1-9.DOI: 10.3321/j.issn:1001-1455.2008.01.001.

    LIANG Bin, CHEN Xiaowei, JI Yongqiang, et al.Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J].Explosion and Shock Waves, 2008, 28(1):1-9.DOI: 10.3321/j.issn:1001-1455.2008.01.001.
    [18] WU H, WANG Y, HUANG F.Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1100 m/s[J].International Journal of Modern Physics B, 2008, 22(09n11):1087-1093.DOI: 10.1142/S0217979208046360.
    [19] HE L L, CHEN X W, WANG Z H.Study on the penetration performance of concept projectile for high-speed penetration(CPHP)[J].International Journal of Impact Engineering, 2016, 94:1-12.DOI: 10.1016/j.ijimpeng.2016.03.010.
    [20] AMON J, SCHWARTZ A, BRANDEIS Y.Missile warhead: U.S.Patent 9, 267, 774[P].2016-02-23.
    [21] 庞春旭, 何勇, 沈晓军, 等.刻槽弹体旋转侵彻铝靶试验与数值模拟[J].弹道学报, 2015(1):70-75.DOI: 10.3969/j.issn.1004-499X.2015.01.014.

    PANG Chunxu, HE Yong, SHEN Xiaojun, et al.Experimental investigation and numerical simulation on grooved projectile rotationally penetration into aluminum target[J].Journal of Ballistics, 2015(1):70-75.DOI: 10.3969/j.issn.1004-499X.2015.01.014.
    [22] 庞春旭, 何勇, 沈晓军, 等.刻槽弹体旋转侵彻混凝土效应试验研究[J].兵工学报, 2015, 36(1):46-52.DOI: 10.3969/j.issn.1000-1093.2015.01.007.

    PANG Chunxu, HE Yong, SHEN Xiaojun, et al.Experimental investigation on penetration of grooved projectiles into concrete targets[J].Acta Armamentarii, 2015, 36(1):46-52.DOI: 10.3969/j.issn.1000-1093.2015.01.007.
    [23] FORRESTAL M J, WARREN T L.Penetration equations for ogive-nose rods into aluminum targets[J].International Journal of Impact Engineering, 2008, 35(8):727-730.DOI: 10.1016/j.ijimpeng.2007.11.002.
    [24] LUK V K, FORRESTAL M J, AMOS D E.Dynamic spherical cavity expansion of strain-hardening materials[J].Journal of Applied Mechanics, 1991, 58(1):1-6.DOI: 10.1115/1.2897150.
    [25] CHEREPANOV G P.An analysis of two models of super-deep penetration[J].Engineering Fracture Mechanics, 1996, 53(3):399-423.DOI: 10.1016/0013-7944(95)00104-2.
    [26] CHEREPANOV G P.Super-deep penetration[J].Engineering Fracture Mechanics, 1994, 47(5):691-713.DOI: 10.1016/0013-7944(94)90160-0.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  5651
  • HTML全文浏览量:  1307
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-02-09
  • 刊出日期:  2018-11-25

目录

    /

    返回文章
    返回