Processing math: 37%
  • ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型

邓佳杰 张先锋 刘闯 王文杰 徐晨阳

邓佳杰, 张先锋, 刘闯, 王文杰, 徐晨阳. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型[J]. 爆炸与冲击, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413
引用本文: 邓佳杰, 张先锋, 刘闯, 王文杰, 徐晨阳. 头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型[J]. 爆炸与冲击, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413
Effects of shell constraints on flow characteristicsin an explosive dispersal of a liquid volume[J]. Explosion And Shock Waves, 2016, 36(6): 803-810. doi: 10.11883/1001-1455(2016)06-0803-08
Citation: DENG Jiajie, ZHANG Xianfeng, LIU Chuang, WANG Wenjie, XU Chenyang. Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target[J]. Explosion And Shock Waves, 2018, 38(6): 1231-1240. doi: 10.11883/bzycj-2017-0413

头部对称刻槽弹体侵彻半无限厚铝合金靶实验与理论模型

doi: 10.11883/bzycj-2017-0413
基金项目: 

国家自然科学基金项目 U1730101

中组部青年拔尖人才支持计划 2014

武器装备预研基金项目 6140657010116BQ02001

详细信息
    作者简介:

    邓佳杰(1990-), 男, 博士研究生

    通讯作者:

    张先锋, lynx@njust.edu.cn

  • 中图分类号: O385

Experimental and theoretical study of symmetrical grooved-nose projectile penetrating into semi-infinite aluminum target

  • 摘要: 在综合考虑弹体结构稳定性及截面比动能的前提下, 提出一种介于尖卵形弹体及尖锥形弹体间的头部对称刻槽弹体, 以期达到提高侵彻深度的目的。以尖卵形弹体侵彻深度为基准, 开展头部对称刻槽弹体侵彻半无限厚铝合金靶实验。在此基础上, 推导得到可描述头部对称刻槽弹体侵彻2A12铝合金靶过程的局部相互作用模型。同时, 结合头部对称刻槽弹体侵彻后靶体破坏现象, 提出适用于头部对称刻槽弹体的靶体响应力, 进而确立头部对称刻槽弹体的侵彻深度模型。实验结果与理论计算表明, 头部对称刻槽弹体具有相对于尖卵形弹体更好的侵彻能力。头部对称刻槽弹体侵彻深度提高的原因是弹体头部结构截面比动能增加及其侵彻过程中的靶体弱化效应, 其中弱化效应是侵彻深度提高的主控因素。
  • 时滞现象常存在于导弹的制导、飞行器的控制与航天系统当中,例如某液体火箭发动机燃烧室内的燃烧过程就包含了非常明显的时滞,其动态模型可简化为一个不稳定的时滞系统[1-2]。在系统的分析与控制器的设计中,如果忽略时滞的影响,往往导致系统不稳定以及性能的下降。因而近年来,时滞系统的稳定性分析及控制问题成为一个热点的研究领域[3-7]。而对于液体火箭发动机而言,燃烧不稳定性问题一直是困扰其技术发展的难题。当发生不稳定燃烧时,燃烧室内压力振荡会给系统的敏感制导元件以及系统结构带来破坏性的影响[8]。因此,如何设计反馈控制器以改善燃烧过程的稳定性能,成为学者们关注的热点问题[9-11]

    文献[12-14]讨论了在状态反馈控制器作用下系统的镇定问题,但所给出的控制器都要求能够精确实现,不具有鲁棒性。在控制器的设计实现中,由于硬件和软件等原因,不同程度上或多或少都存在一定的不确定性[15]。当控制器参数存在摄动时,常规的鲁棒控制器表现出高度的脆弱性,从而造成闭环系统的性能下降甚至控制器失效。非脆弱控制[16]的提出,弥补了这一不足,它不仅考虑被控对象的不确定性,而且考虑控制器增益本身的不确定性,因而更具适应性。文献[17-19]和文献[20-21]分别针对时滞系统的非脆弱H控制问题和非脆弱保性能控制问题进行了深入研究。在这些研究中,主要围绕如何降低所得结论的保守性和满足一定的性能指标而展开。因此,如何选取合适的L-K泛函和界定条件,进一步得到保守性更小的时滞相关条件从而设计有效的控制器便成为目前时滞系统稳定性分析与控制综合的首要问题。

    本文中针对某液体火箭发动机的动态燃烧模型,在假定控制器增益存在加性不确定的条件下,提出一个形式简单、保守性更低的时滞相关有界实判据。该判据借助于一种新型的时滞分割法,把时滞区间分割成不均匀的两部分,针对每一分割区间构造新的L-K泛函,并采用新的积分不等式和交互式凸组合技术给出不包含任何多余参量的LMI形式结论。在此基础上设计了鲁棒非脆弱H控制器。模拟结果表明,该控制器允许控制器增益存在一定范围内的摄动,改善了传统鲁棒控制器的镇定效果,具有更强的鲁棒性。

    首先给出以下标记:Rnn维欧氏空间,Rn×mn×m维实矩阵,*为对称矩阵中的对称项,I为适当维数的单位矩阵。M=MT>0表示矩阵M为对称矩阵,ei表示适当维数的块输入矩阵,例如eT6=[0000010000]

    考虑带有反馈伺服机构的单一燃料液体火箭发动机推进系统,系统描述见文献[9-10]。在假定非恒稳流动并考虑一致滞后情况下,整个系统的动态方程[1-2]为:

    {˙ϕ(t)=(γ1)ϕ(t)γϕ(tδ)+μ(tδ)˙μ1(t)=1ξJ[ψ(t)+p0p1(t)2Δp+ω(t)]˙μ(t)=1(1ξ)J[μ(t)+ψ(t)Pϕ(t)]˙ψ(t)=1E[μ1(t)μ(t)] (1)

    式中:ϕ(t)表示燃烧室内的无量纲瞬时压力,μ1(t)表示无量纲瞬时质逆流容量,μ(t)表示喷射推进剂的无量纲瞬时速率;ψ(t)表示流路上的无量纲瞬时压力,ω(t)表示无量纲扰动输入,选取u=(p0p1(t))/(2Δp)为控制变量,γ=1, ξ=0.5, P=1, J=2, E=1,令x(t)=[ϕ(t)μ1(t)μ(t)ψ(t)]T,那么系统可化为:

    ˙x(t)=Ax(t)+A1x(tδ)+Bu(t)+B1ω(t) (2)
    其中,A=[0000000110110110],A1=[1010000000000000],B=B1=[0100]

    假设初始函数取为:x(θ)=[1111]Tθ[1,0],时滞δ=1,则系统不加控制(u(t)=0)时的状态曲线如图1所示,此时系统的运动是不稳定的。

    图  1  燃烧室燃烧过程的自由运动曲线
    Figure  1.  Free motion of combustion in chambers

    针对系统(1)定义如下性能指标

    Λ(ω)=0[z(t)Tz(t)ρ2ωT(t)ω(t)]dt(3)

    式中:ρ0为给定标量,ω(t)为系统扰动输入,z(t)为系统受控输出。

    本文主要目标是在外部干扰作用下,设计状态反馈非脆弱H控制器u(t)=[K+ΔK(t)]x(t),其中K为控制器增益,ΔK(t)为增益摄动且具有加性不确定性,满足:ΔK(t)=DcFc(t)EcFTc(t)Fc(t)IDcEc为具有适当维数的常数矩阵,Fc(t)为未知时变矩阵。

    非脆弱H控制器u(t)使得所构造的闭环系统不仅内部稳定,而且在零初始条件下具有给定的H扰动抑制水平ρ,即满足:||z(t)||2ρ||ω(t)||2, ω(t)L2[0,),ω(t)0

    为了方便稳定性判据的证明,现将下一步需用到的引理归纳如下:

    引理1[4]。假定任意的正定矩阵M=MT0,标量h0和向量函数:˙x(t):[0,h]Rn,则有以下不等式成立:

    h0th˙xT(s)M˙x(s)ds[x(t)x(th)]T[MMMM][x(t)x(th)]

    引理2[6]。假定任意的正定矩阵M=MT0,标量h>0和向量函数:x(t):[0,h]Rn,则有以下不等式成立:

    htthxT(s)Mx(s)dstthxT(s)dsMtthx(s)dsh220htt+βxT(s)Mx(s)dsdβ0htt+βxT(s)dsdβM0htt+βx(s)dsdβh360h0βtt+λxT(s)Mx(s)dsdβdλ0h0βtt+λxT(s)dsdβdλM0h0βtt+λx(s)dsdβdλ

    引理3[7]。假定任意的正定矩阵M=MT0,标量0α,ε1hmh(t)hM,向量函数:x(t):[0,h]Rn,则有以下不等式成立:

    (hMhm)thmthMxT(s)Mx(s)dsζT(t)(e7MeT7+e6MeT6)ζ(t)αζT(t)e7MeT7ζ(t)(1α)ζT(t)e6MeT6ζ(t)(h2Mh2m)2hmhMtt+βxT(s)Mx(s)dsdβζT(t)(e10MeT10+e9MeT9)ζ(t)εζT(t)e10MeT10ζ(t)(1ε)ζT(t)e9MeT9ζ(t)

    式中:

    ζ(t)=[x(t)x(th(t))x(thm)x(thM)tthmx(s)dsthmth(t)x(s)dsth(t)thMx(s)ds0hmtt+βx(s)dsdβhmh(t)tt+βx(s)dsdβh(t)hMtt+βx(s)dsdβ]

    引理4[21]。给定适当维数的矩阵Q=QT,HE,则有Q+HF(t)E+ETF(t)THT0,对任意满足F(t)TF(t)IF(t)成立的充要条件是存在标量ϑ0,使得:

    Q+ϑ1HHT+ϑETE0

    针对系统(1)~(2),考虑如下一类具有区间变时滞的线性系统:

    {˙x(t)=Ax(t)+A1x(th(t))+Buu(t)+Bωω(t)z(t)=Cx(t)+Cdx(th(t))+Duu(t)+Dωω(t)x(t)=φ(t)t[hM,0] (4)

    式中:x(t)Rnu(t)Rmω(t)Rpz(t)Rl分别为系统状态向量、控制输入向量、扰动输入向量以及受控输出向量,且ω(t)L2[0,)AA1BuBωCCdDuDω为适当维数的常数实矩阵。h(t)为时变连续的函数且满足:0hmh(t)hM˙h(t)μhmhMμ为常数,φ(t)[hM,0]上的连续可微初始函数。

    将非脆弱H控制器u(t)代入系统(4)中,可得闭环系统为:

    {˙x(t)=Akx(t)+A1x(th(t))+Bωω(t)z(t)=Ckx(t)+Cdx(th(t))+Dωω(t)x(t)=φ(t)t[h2,0] (5)

    式中:Ak=A+BuK+BuΔKCk=C+DuK+DuΔK

    定理1。对于给定的标量hmhMλ1λ2λ1λ2),且若存在正定对称矩阵Pii=1,2,3,4,5)、Q1Q2U1U2XjRj(j=1,2,3,4),使得如下LMIs成立:

    Φ=(Φi,j)10×100 (6)

    则系统(5)在非脆弱控制器(3)的作用下不仅渐近稳定,而且在零初始条件下具有给定的H扰动抑制水平ρ

    式(6)中:

    Φ1,1=P1A+ATP1+Q1+h2mX1+h2mATX2AX2+(hMhm)2X3+(hMhm)2ATX4A+h4m4R1+h4m4ATR2Ah2mR2+(h2Mh2m)24R3+(h2Mh2m)24ATR4A3(hMhm)2R4+h6m36ATU1Ah4m4U1+(h3Mh3m)236ATU2A+(h2Mh2m)24U2,Φ1,2=h2mATX2B+(hMhm)2ATX4B+h4m4ATR2B+(h2Mh2m)24ATR4B+h6m36ATU1B+(h3Mh3m)236ATU2B,Φ1,3=X2,Φ1,4=0,Φ1,5=2P2+hmR2,Φ1,6=(2ε)(hMhm)R4,Φ1,7=(1+ε)(hMhm)R4,Φ1,8=2hmP4+h2m2U1,Φ1,9=Φ1,10=2(hMhm)P5+(h2Mh2m)2U2,Φ2,2=h2mBTX2B+(hMhm)2BTX4BX4+h4m4BTR2B+(h2Mh2m)24BTR4B+h6m36BTU1B+(h3Mh3m)236BTU2B,Φ2,3=(α2)X4,Φ2,4=(1+α)X4,Φ2,5=Φ2,6=Φ2,7=Φ2,8=Φ2,9=Φ2,10=0,Φ3,3=Q2Q1X2+(α2)X4,Φ3,4=0,Φ3,5=2P2,Φ3,6=Φ3,7=2P3,Φ3,8=Φ3,9=Φ3,10=0,Φ4,4=Q2(1+α)X4,Φ4,5=0,Φ4,6=Φ4,7=2P3,Φ4,8=Φ4,9=Φ4,10=0,Φ5,5=X1R2,Φ5,6=Φ5,7=0,Φ5,8=2P4,Φ5,9=Φ5,10=0,Φ6,6=(α2)X3(2ε)R4,Φ6,7=Φ6,8=0,Φ6,9=Φ6,10=2P5,Φ7,7=(α+1)X3(1+ε)R4,Φ7,8=0,Φ7,9=Φ7,10=2P5,Φ8,8=R1U1,Φ8,9=Φ8,10=0,Φ9,9=(2ε)R3U2,Φ9,10=U2,Φ10,10=(1+ε)R3U2,α=h(t)hmhMhm,ε=h(t)2h2mh2Mh2m,

    证明:令hΔ=χhm+(1χ)hM,(0 \text{<} \chi \text{<} 1),则有{h_m}\text{<} {h_\Delta } \text{<} {h_M}。基于{h_\Delta }把时滞区间分成不均匀的两部分,即[{h_m},{h_\Delta }][{h_\Delta },{h_M}],下面分两种情况讨论。

    情形1:当{h_\Delta } \text{≤} h(t) \text{≤} {h_M}时,设计如下LKF:

    {{V}}({{x}}(t)) = {{{V}}_1}({{x}}(t)) + {{{V}}_2}({{x}}(t)) + {{{V}}_3}({{x}}(t)) + {{{V}}_4}({{x}}(t)) + {{{V}}_5}({{x}}(t)) (7)

    式中:

    \begin{aligned} {{{V}}_1}({{x}}(t)) =& {{{x}}^{\rm T}}(t){{{P}}_1}{{x}}(t) + \int_{t - {h_\Delta }}^t {{{{x}}^{\rm T}}(s){\rm d}s} {{{P}}_2}\int_{t - {h_\Delta }}^t {{{x}}(s){\rm d}s} + \int_{t - {h_M}}^{t - {h_\Delta }} {{{{x}}^{\rm T}}(s)} {\rm d}s{{{P}}_3}\int_{t - {h_M}}^{t - {h_\Delta }} {{{x}}(s)} {\rm d}s +\\ & \int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s){\rm d}s{\rm d}\beta } } {{{P}}_4}\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{x}}(s){\rm d}s{\rm d}\beta } } + \int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s){\rm d}s{\rm d}\beta } } {{{P}}_5}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{x}}(s){\rm d}s{\rm d}\beta } } \\ {{{V}}_2}({{x}}(t)) =& \int_{t - {h_\Delta }}^t {{{{x}}^{\rm T}}(s)} {{{Q}}_1}{{x}}(s){\rm d}s + \int_{t - {h_M}}^{t - {h_\Delta }} {{{{x}}^{\rm T}}(s)} {{{Q}}_2}x(s){\rm d}s \\ {{{V}}_3}({{x}}(t)) =& {h_\Delta }\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s)} } {{{X}}_1}{{x}}(s){\rm d}s{\rm d}\beta + {h_\Delta }\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{X}}_2}\dot {{x}}(s){\rm d}s{\rm d}\beta +\\ & ({h_M} - {h_\Delta })\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s)} } {{{X}}_3}{{x}}(s){\rm d}s{\rm d}\beta + ({h_M} - {h_\Delta })\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{X}}_4}\dot {{x}}(s){\rm d}s{\rm d}\beta \\ {{{V}}_4}({{x}}(t)) =& \frac{{h_\Delta ^2}}{2}\int_{ - {h_\Delta }}^0 {\int_\beta ^0 {\int_{t + \lambda }^t {{{{x}}^{\rm T}}(s)} } {{{R}}_1}{{x}}(s){\rm d}s{\rm d}\lambda } d\beta + \frac{{h_\Delta ^2}}{2}\int_{ - {h_\Delta }}^0 {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{R}}_2}\dot {{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta + \\ & \frac{{(h_M^2 - h_\Delta ^2)}}{2}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_\beta ^0 {\int_{t + \lambda }^t {{{{x}}^{\rm T}}(s)} } {{{R}}_3}{{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta + \frac{{(h_M^2 - h_\Delta ^2)}}{2}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{R}}_4}\dot {{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta \\ {{{V}}_5}({{x}}(t)) =& \frac{{h_\Delta ^3}}{6}\int_{ - {h_\Delta }}^0 {\int_\beta ^0 {\int_\lambda ^0 {\int_{t + \varphi }^t {{{\dot {{x}}}^{\rm T}}(s){{{U}}_1}\dot {{x}}(s)} } {\rm d}s{\rm d}\varphi } } {\rm d}\lambda {\rm d}\beta + \frac{{(h_M^3 - h_\Delta ^3)}}{6}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_\beta ^0 {\int_\lambda ^0 {\int_{t + \varphi }^t {{{\dot {{x}}}^T}(s){{{U}}_2}\dot {{x}}(s)} } {\rm d}s{\rm d}\varphi } }{\rm d}\lambda {\rm d}\beta \end{aligned}

    计算L-K泛函{{V}}({{x}}(t))沿系统(4)的导数,可得:

    \dot {{V}}({{x}}(t)) = {\dot {{V}}_1}(t) + {\dot {{V}}_2}(t) + {\dot {{V}}_3}(t) + {\dot {{V}}_4}(t) + {\dot {{V}}_5}(t) (8)
    \begin{aligned} {{\dot {{V}}}_1}(t)=& 2{{{x}}^{\rm T}}(t){{{A}}^{\rm T}}{{{P}}_1}{{x}}(t) + {{{x}}^{\rm T}}(t - h(t)){{{B}}^{\rm T}}{{{P}}_1}{{x}}(t) + 2{{{x}}^{\rm T}}(t){{{P}}_2}\int_{t - {h_\Delta }}^t {{{x}}(s)} {\rm d}s - 2{{{x}}^{\rm T}}(t - {h_\Delta }){{{P}}_2}\int_{t - {h_\Delta }}^t {{{x}}(s)} {\rm d}s +\\ & 2{{{x}}^{\rm T}}(t - {h_\Delta }){{{P}}_3}\int_{t - {h_M}}^{t - {h_\Delta }} {{{x}}(s)} {\rm d}s - 2{x^{\rm T}}(t - {h_M}){{{P}}_3}\int_{t - {h_M}}^{t - {h_\Delta }} {{{x}}(s)} {\rm d}s{\rm{ + }}2{h_\Delta }{{{x}}^{\rm T}}(t){{{P}}_4}\int_{ - {h_\Delta }}^0 {\int_{t{\rm{ + }}\beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta -\\ & 2\int_{t - {h_\Delta }}^t {{{{x}}^{\rm T}}(s)} {\rm d}s{{{P}}_4}\int_{ \!-\! {h_\Delta }}^0 {\int_{t{\rm{ \!+\! }}\beta }^t {{{x}}(s)} } {\rm d}s{\rm d}\beta \!+\! 2({h_M} - {h_\Delta }){{{x}}^{\rm T}}(t){{{P}}_5}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t{\rm{\! +\! }}\beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta - 2\int_{t - {h_M}}^{t - {h_\Delta }} {{{{x}}^{\rm T}}(s)} {\rm d}s{{{P}}_5}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t{\rm{ + }}\beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta\\ {\dot {{V}}_2}(t) =& {{{x}}^{\rm T}}(t){{{Q}}_1}{{x}}(t) - {{{x}}^{\rm T}}(t - {h_\Delta }){{{Q}}_1}{{x}}(t - {h_\Delta }) + {{{x}}^{\rm T}}(t - {h_\Delta }){{{Q}}_2}{{x}}(t - {h_\Delta }) - {{{x}}^{\rm T}}(t - {h_M}){{{Q}}_2}{{x}}(t - {h_M}) \end{aligned}
    \begin{aligned} {{\dot {{V}}}_3}(t) =& h_\Delta ^2{{{x}}^{\rm T}}(t){{{X}}_1}{{x}}(t) - {h_\Delta }\int_{t - {h_\Delta }}^t {{{{x}}^{\rm T}}(s)} {{{X}}_1}{{x}}(s){\rm d}s + h_\Delta ^2{{\dot {{x}}}^{\rm T}}(t){{{X}}_2}\dot {{x}}(t) - {h_\Delta }\int_{t - {h_\Delta }}^t {{{\dot {{x}}}^{\rm T}}(s)} {{{X}}_2}\dot {{x}}(s){\rm d}s+\\ & {({h_M} - {h_\Delta })^2}{{{x}}^{\rm T}}(t){{{X}}_3}{{x}}(t) - ({h_M} - {h_\Delta })\int_{t - {h_M}}^{t - {h_\Delta }} {{{{x}}^{\rm T}}(s)} {{{X}}_3}{{x}}(s){\rm d}s + {({h_M} - {h_\Delta })^2}{{\dot {{x}}}^{\rm T}}(t){{{X}}_4}\dot {{x}}(t) - ({h_M} - {h_\Delta })\int_{t - {h_M}}^{t - {h_\Delta }} {{{\dot {{x}}}^{\rm T}}(s)} {{{X}}_4}\dot {{x}}(s){\rm d}s \\ {{\dot {{V}}}_4}(t) =& \frac{{h_\Delta ^4}}{4}{{{x}}^{\rm T}}(t){{{R}}_1}{{x}}(t) - \frac{{h_\Delta ^2}}{2}\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s)} {{{R}}_1}{{x}}(s)} {\rm d}s{\rm d}\beta + \frac{{h_\Delta ^4}}{4}{{\dot {{x}}}^{\rm T}}(t){{{R}}_2}\dot {{x}}(t) - \frac{{h_\Delta ^2}}{2}\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{\dot {{x}}}^T}(s){{{R}}_2}\dot {{x}}(s)} }{\rm d}s{\rm d}\beta + \\ & \frac{{{{(h_M^2 - h_\Delta ^2)}^2}}}{4}{{{x}}^{\rm T}}(t){{{R}}_3}{{x}}(t) - \frac{{(h_M^2 - h_\Delta ^2)}}{2}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s){{{R}}_3}{{x}}(s)} } {\rm d}s{\rm d}\beta + \frac{{{{(h_M^2 - h_\Delta ^2)}^2}}}{4}{{\dot {{x}}}^{\rm T}}(t){{{R}}_4}\dot {{x}}(t) -\\ & \frac{{(h_M^2 - h_\Delta ^2)}}{2}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{\dot {{x}}}^{\rm T}}(s){{{R}}_4}\dot {{x}}(s)} } {\rm d}s{\rm d}\beta \\ {{\dot {{V}}}_5}(t) =& \frac{{h_\Delta ^6}}{{36}}{{\dot {{x}}}^{\rm T}}(t){{{U}}_1}\dot {{x}}(t) - \frac{{h_\Delta ^3}}{6}\int_{ - {h_\Delta }}^0 {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} {{{U}}_1}\dot {{x}}(s){\rm d}s} {\rm d}\lambda } {\rm d}\beta + \frac{{{{(h_M^3 - h_\Delta ^3)}^2}}}{{36}}{{\dot {{x}}}^{\rm T}}(t){{{U}}_2}\dot {{x}}(t)- \\ &\frac{{(h_M^3 - h_\Delta ^3)}}{6}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} {{{U}}_2}\dot {{x}}(s){\rm d}s} {\rm d}\lambda } {\rm d}\beta \end{aligned}

    由引理1与引理2可得:

    - {h_\Delta }\int_{t - {h_\Delta }}^t {{{{x}}^{\rm T}}(s)} {{{X}}_1}{{x}}(s){\rm d}s \text{≤} - {\zeta ^{\rm T}}(t){{{e}}_5}{{{X}}_1}{{e}}_5^{\rm T}\zeta (t) (9)
    - {h_\Delta }\int_{t - {h_\Delta }}^t {{{\dot {{x}}}^{\rm T}}(s)} {{{X}}_2}\dot {{x}}(s){\rm d}s \text{≤} - {\zeta ^{\rm T}}(t)({{{e}}_1} - {{{e}}_3}){{{X}}_2}({{e}}_1^{\rm T} - {{e}}_3^{\rm T})\zeta (t) (10)

    式中:

    \begin{aligned} \zeta (t) =& \left[ {\begin{array}{*{20}{c}} {{{x}}(t)}&{{{x}}(t - h(t))}&{{{x}}(t - {h_\Delta })}&{{{x}}(t - {h_M})}&{\displaystyle\int_{t - {h_\Delta }}^t {{{x}}(s){\rm d}s} }&{\displaystyle\int_{t - h(t)}^{t - {h_\Delta }} {{{x}}(s){\rm d}s} }&{\displaystyle\int_{t - {h_M}}^{t - h(t)} {{{x}}(s){\rm d}s} } \end{array}} \right. \\ & \!\!\!\!\!\!\!\left. {\begin{array}{*{20}{c}} {\displaystyle\int_{ - {h_\Delta }}^0 {\displaystyle\int_{t + \beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta }&{\displaystyle\int_{ - h(t)}^{ - {h_\Delta }} {\displaystyle\int_{t + \beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta }&{\displaystyle\int_{ - {h_M}}^{ - h(t)} {\displaystyle\int_{t + \beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta } \end{array}} \right] \\ \end{aligned}

    由引理3可得:

    - ({h_M} - {h_\Delta })\int_{t - {h_M}}^{t - {h_\Delta }} {{{{x}}^{\rm T}}(s)} {{{X}}_3}{{x}}(s){\rm d}s \text{≤} - {\zeta ^{\rm T}}(t)({{{e}}_7}{{{X}}_3}{{e}}_7^{\rm T} + {{{e}}_6}{{{X}}_3}{{e}}_6^{\rm T})\zeta (t) - \alpha {\zeta ^{\rm T}}(t){{{e}}_7}{{{X}}_3}{{e}}_7^{\rm T}\zeta (t) - (1 - \alpha ){\zeta ^{\rm T}}(t){{{e}}_6}{{{X}}_3}{{e}}_6^{\rm T}\zeta (t)

    同样可以得到:

    \begin{aligned} - ({h_M} - &{h_\Delta })\displaystyle\int_{t - {h_M}}^{t - {h_\Delta }} {{{\dot x}^{\rm T}}(s)} {{{X}}_4}\dot {{x}}(s){\rm d}s \text{≤} - {\zeta ^{\rm T}}(t)({{{e}}_2} - {{{e}}_4}){{{X}}_4}({{e}}_2^{\rm T} - {{e}}_4^{\rm T})\zeta (t) - {\zeta ^{\rm T}}(t)({{{e}}_3} - {{{e}}_2}){{{X}}_4}({{e}}_3^{\rm T} - {{e}}_2^{\rm T})\zeta (t) -\\ &\quad \alpha {\zeta ^{\rm T}}(t)({{{e}}_2} - {{{e}}_4}){{{X}}_4}({{e}}_2^{\rm T} - {{e}}_4^{\rm T})\zeta (t) - (1 - \alpha ){\zeta ^{\rm T}}(t)({{{e}}_3} - {{{e}}_2}){{{X}}_4}({{e}}_3^T - {{e}}_2^{\rm T})\zeta (t) \\ \end{aligned} (12)
    - \frac{{h_\Delta ^2}}{2}\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s)} {{{R}}_1}{{x}}(s)} {\rm d}s{\rm d}\beta \text{≤} - {\zeta ^{\rm T}}(t){{{e}}_8}{{{R}}_1}{{e}}_8^{\rm T}\zeta (t) (13)
    - \frac{{h_\Delta ^2}}{2}\int_{ - {h_\Delta }}^0 {\int_{t + \beta }^t {{{\dot {{x}}}^{\rm T}}(s){{{R}}_2}\dot {{x}}(s)} } {\rm d}s{\rm d}\beta \text{≤} - {\zeta ^{\rm T}}(t)({h_\Delta }{{{e}}_1} - {{{e}}_5}){{{R}}_3}({h_\Delta }e_1^{\rm T} - {{e}}_5^{\rm T})\zeta (t) (14)
    \begin{aligned} - \displaystyle\frac{{(h_M^2 - h_\Delta ^2)}}{2}\displaystyle\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s){{{R}}_3}{{x}}(s)} } {\rm d}s{\rm d}\beta \text{≤} & - {\zeta ^{\rm T}}(t)({{{e}}_{10}}{{{R}}_3}e_{10}^{\rm T} + {{{e}}_9}{{{R}}_3}{{e}}_9^{\rm T})\zeta (t) - \varepsilon {\zeta ^{\rm T}}(t){{{e}}_{10}}{{{R}}_3}{{e}}_{10}^{\rm T}\zeta (t) - \\&\quad(1 - \varepsilon ){\zeta ^{\rm T}}(t){{{e}}_9}{{{R}}_3}{{e}}_9^{\rm T}\zeta (t) \end{aligned} (15)
    \begin{aligned} & - \displaystyle\frac{{(h_M^2 - h_\Delta ^2)}}{2}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_{t + \beta }^t {{{\dot { x}}^{\rm T}}(s){{{R}}_4}\dot { x}(s)} } {\rm d}s{\rm d}\beta \text{≤} \\ &\quad - {\zeta ^{\rm T}}(t)\left( {({h_M} - {h_\Delta }){{{e}}_1} - {{{e}}_7}} \right){{{R}}_4}\left( {({h_M} - {h_\Delta }){{e}}_1^{\rm T} - {{e}}_7^{\rm T}} \right)\zeta (t) - \varepsilon {\zeta ^{\rm T}}(t)\left( {({h_M} - {h_\Delta }){{{e}}_1} - {{{e}}_7}} \right){{{R}}_4}\left( {({h_M} - {h_\Delta }){{e}}_1^{\rm T} - {{e}}_7^{\rm T}} \right)\zeta (t) - \\ &\quad {\zeta ^{\rm T}}(t)\left( {({h_M} - {h_\Delta }){{{e}}_1} - {{{e}}_6}} \right){{{R}}_4}\left( {({h_M} - {h_\Delta }){{e}}_1^{\rm T} - {{e}}_6^{\rm T}} \right)\zeta (t) - (1 - \varepsilon ){\zeta ^{\rm T}}(t)\left( {({h_M} - {h_\Delta }){{{e}}_1} - {{{e}}_6}} \right){{{R}}_4}\left( {({h_M} - {h_\Delta }){{e}}_1^{\rm T} - {{e}}_6^{\rm T}} \right)\zeta (t) \end{aligned} (16)
    - \frac{{h_\Delta ^3}}{6}\int_{ - {h_\Delta }}^0 {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} {{{U}}_1}\dot {{x}}(s){\rm d}s} {\rm d}\lambda } {\rm d}\beta \text{≤} - {\zeta ^{\rm T}}(t)\left(\frac{{h_\Delta ^2}}{2}{{{e}}_1} - {e_8}\right){{{U}}_1}\left(\frac{{h_\Delta ^2}}{2}{{e}}_1^{\rm T} - {{e}}_8^{\rm T}\right)\zeta (t) (17)
    - \frac{{(h_M^3 - h_\Delta ^3)}}{6}\int_{ - {h_M}}^{ - {h_\Delta }} {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} {{{U}}_2}\dot {{x}}(s){\rm d}s} {\rm d}\lambda } {\rm d}\beta \text{≤} - {\zeta ^{\rm T}}(t)\left(\frac{{(h_M^2 - h_\Delta ^2)}}{2}{{{e}}_1} - {{{e}}_9} - {{{e}}_{10}}\right){{{U}}_2}\left(\frac{{(h_M^2 - h_\Delta ^2)}}{2}{{e}}_1^{\rm T} - {{e}}_9^{\rm T} - {{e}}_{10}^{\rm T}\right)\zeta (t) (18)

    把式(9)~(18)代入式(8),则\dot {{V}}({{x}}(t))可表示为:

    \dot {{V}}({{x}}(t)) \text{≤}{\zeta ^{\rm T}}(t)\left[ {\alpha {{{\varGamma}} _1} + (1 - \alpha ){{{\varGamma}} _2} + \varepsilon {{{\varGamma}} _3} + (1 - \varepsilon ){{{\varGamma}} _4}} \right]\zeta (t) (19)

    式中:

    \begin{aligned}{{{\varGamma}} _1}{\rm{ = }}& - {{{e}}_7}{{{X}}_3}{{e}}_7^{\rm T} - {\rm{(}}{{{e}}_2} - {{{e}}_4}{\rm{)}}{{{X}}_4}{\rm{(}}{{e}}_2^{\rm T} - {{e}}_4^{\rm T}{\rm{),}}{{{\Gamma}} _2}{\rm{ = }} - {{{e}}_6}{{{X}}_3}{{e}}_6^{\rm T} - {\rm{(}}{{{e}}_3} - {{{e}}_2}{\rm{)}}{{{X}}_4}{\rm{(}}{{e}}_3^{\rm T} - {{e}}_2^{\rm T}{\rm{),}}\\ {{{\varGamma}} _3}{\rm{ = }}& - {{{e}}_{10}}{{{R}}_3}{{e}}_{10}^{\rm T} - {\rm{((}}{h_M} - {h_\Delta }{\rm{)}}{{{e}}_1} - {{{e}}_7}{\rm{)}}{{{R}}_4}{\rm{((}}{h_M} - {h_\Delta }{\rm{)}}{{e}}_1^{\rm T} - {{e}}_7^{\rm T}{\rm{),}}{{{\Gamma}} _4}{\rm{ = }} - {{{e}}_9}{{{R}}_3}{{e}}_9^{\rm T} - {\rm{((}}{h_M} - {h_\Delta }{\rm{)}}{{{e}}_1} - {{{e}}_6}{\rm{)}}{{{R}}_4}{\rm{((}}{h_M} - {h_\Delta }{\rm{)}}{{e}}_1^{\rm T} - {{e}}_6^{\rm T}{\rm{)}}{\text{。}} \end{aligned}

    因为0 \text{≤} \alpha ,\varepsilon \text{≤} 1,根据交互式凸组合技术,如下不等式成立:

    \alpha ({{{\varGamma}} _1} + {\lambda _1}{{I}}){\rm{ + (1}} - \alpha {\rm{)(}}{{{\varGamma}} _2} + {\lambda _1}{{I}}{\rm{)}} \text{<}0 (20)
    \varepsilon ({{{\varGamma}} _3} - {\lambda _2}{{I}}){\rm{ + (1}} - \varepsilon {\rm{)(}}{{{\varGamma}} _4} - {\lambda _2}{{I}}{\rm{)}} \text{<} 0 (21)

    \alpha {{{\varGamma}} _1}{\rm{ + (1}} - \alpha {\rm{)}}{{{\varGamma}} _2} \text{<} - {\lambda _1}{{I}} (22)
    \varepsilon {{{\varGamma}} _3}{\rm{ + (1}} - \varepsilon {\rm{)}}{{{\varGamma}} _4} \text{<}{\lambda _2}{{I}} (23)

    由于{\lambda _1} \text{>} {\lambda _2},合并式(22)~(23),可得

    \alpha {{{\varGamma}} _1}{\rm{ + (1}} - \alpha {\rm{)}}{{{\varGamma}} _2} + \varepsilon {{{\varGamma}} _3}{\rm{ + (1}} - \varepsilon {\rm{)}}{{{\varGamma}} _4} \text{<}({\lambda _2} - {\lambda _1}){{I}} \text{<} 0 (24)

    根据L-K稳定性定理,如果\alpha {{{\varGamma}} _1}{\rm{ + (1}} - \alpha {\rm{)}}{{{\varGamma}} _2} + \varepsilon {{{\varGamma}} _3}{\rm{ + (1}} - \varepsilon {\rm{)}}{{{\varGamma}} _4} \text{<} 0,则存在充分小正数{\delta _0}使得\dot {{V}}({{x}}(t)) \text{<} - {\delta _0}{\left\| {{{x}}(t)} \right\|^2}\,成立,进而可知系统(5)渐近稳定。

    对于给定的{{\kappa}} ,考虑性能指标\Lambda (\omega ),则把{{z}}{(t)^{\rm T}}{{z}}(t) - {\rho ^2}{{{\omega}} ^{\rm T}}(t){{\omega}} (t)加到不等式(19)两边,可得:

    \dot {{V}}({{x}}(t)) + {{z}}{(t)^{\rm T}}{{z}}(t) - {\rho ^2}{{{\omega}} ^{\rm T}}(t){{\omega}} (t) \text{≤} {\zeta ^{\rm T}}(t)({{\varOmega}} + {{{\varPsi}} ^{\rm T}}{{\varPsi}} + \alpha {{{\varGamma}} _1} + (1 - \alpha ){{{\varGamma}} _2} + \varepsilon {{{\Gamma}} _3} + (1 - \varepsilon ){{\varGamma _4}})\zeta (t) (25)

    式中:{{\Omega}} = {\rm{diag}}\left\{ {\begin{array}{*{20}{c}}0&0&0&0&0&0&0&{ - {\rho ^2}{{I}}}\end{array}} \right\},{{\varPsi}} = \left[ {\begin{array}{*{20}{c}}{{{{C}}_k}} &0 &0 &0 &0 &0 &0 &{{{{D}}_\omega }}\end{array}} \right]

    如果

    {{\varOmega}} + {{{\varPsi}} ^{\rm T}}{{\varPsi}} + \alpha {{{\varGamma}} _1} + (1 - \alpha ){{{\varGamma}} _2} + \varepsilon {{{\varGamma}} _3} + (1 - \varepsilon ){{{\varGamma}} _4} \text{<} 0 (26)

    那么

    \dot {{V}}({{x}}(t)) + {{z}}{(t)^{\rm T}}z(t) - {\rho ^2}{{{\omega}} ^{\rm T}}(t){{\omega}} (t) \text{≤} 0 (27)

    {{\omega}} (t) = 0时,\dot {{V}}({{x}}(t)) \text{<} 0,同样可得系统(5)是渐近稳定的;当{{\omega}} (t) \ne 0时,式(27)两边对t从0到∞积分,并注意到在零初始条件下,有{{V}}({{x}}(t)){|_{t = 0}},得到

    \int_0^\infty {\left[ {{{{z}}^{\rm T}}(t){{z}}(t) - {\rho ^2}{{{\omega}} ^{\rm T}}(t)\omega (t)} \right]{\rm d}t} \text{<} - {{V}}({{x}}(t)){|_{t = \infty }} + {{V}}({{x}}(t)){|_{t = 0}} \text{<} 0 (28)

    ||{{z}}(t)|{|_2} \text{<} \rho ||{{\omega}} (t)|{|_2},从而闭环系统在零初始条件下具有给定的{H_\infty }扰动抑制水平\rho

    情形2:当{h_m} \text{≤} h(t) \text{≤} {h_\Delta }时,设计如下L-K泛函:

    {{{V}}_0}({{x}}(t)) = {{{V}}_{01}}({{x}}(t)) + {{{V}}_{02}}({{x}}(t)) + {{{V}}_{03}}({{x}}(t)) + {{{V}}_{04}}({{x}}(t)) + {{{V}}_{05}}({{x}}(t)) (29)

    式中:

    \begin{aligned} {{{V}}_{01}}({{x}}(t)) =& {{{x}}^{\rm T}}(t){{{P}}_1}{{x}}(t) + \int_{t - {h_m}}^t {{{{x}}^{\rm T}}(s){\rm d}s} {{{P}}_2}\int_{t - {h_m}}^t {{{x}}(s){\rm d}s} + \int_{t - {h_\Delta }}^{t - {h_m}} {{{{x}}^{\rm T}}(s)} {\rm d}s{{{P}}_3}\int_{t - {h_\Delta }}^{t - {h_m}} {{{x}}(s)} {\rm d}s +\\ & \int_{ - {h_m}}^0 {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s){\rm d}s{\rm d}\beta } } {{{P}}_4}\int_{ - {h_m}}^0 {\int_{t + \beta }^t {{{x}}(s){\rm d}s{\rm d}\beta } } + \int_{ - {h_\Delta }}^{ - {h_m}} {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s){\rm d}s{\rm d}\beta } } {{{P}}_5}\int_{ - {h_\Delta }}^{ - {h_m}} {\int_{t + \beta }^t {{{x}}(s){\rm d}s{\rm d}\beta } } \\ {{{V}}_{02}}({{x}}(t)) =& \int_{t - {h_{\rm{m}}}}^t {{{{x}}^{\rm T}}(s)} {{{Q}}_1}{{x}}(s){\rm d}s + \int_{t - {h_\Delta }}^{t - {h_{\rm{m}}}} {{{{x}}^{\rm T}}(s)} {{{Q}}_2}{{x}}(s){\rm d}s\\ {{{V}}_{03}}({{x}}(t)) =& {h_{\rm{m}}}\int_{ - {h_{\rm{m}}}}^0 {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s)} } {{{X}}_1}{{x}}(s){\rm d}s{\rm d}\beta + {h_{\rm{m}}}\int_{ - {h_{\rm{m}}}}^0 {\int_{t + \beta }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{X}}_2}\dot {{x}}(s){\rm d}s{\rm d}\beta +\\ & ({h_\Delta } - {h_{\rm{m}}})\int_{ - {h_\Delta }}^{ - {h_{\rm{m}}}} {\int_{t + \beta }^t {{{{x}}^{\rm T}}(s)} } {{{X}}_3}{{x}}(s){\rm d}s{\rm d}\beta + ({h_\Delta } - {h_{\rm{m}}})\int_{ - {h_\Delta }}^{ - {h_{\rm{m}}}} {\int_{t + \beta }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{X}}_4}\dot x(s){\rm d}s{\rm d}\beta \\ {{{V}}_{04}}(x(t)) =& \frac{{h_{\rm{m}}^2}}{2}\int_{ - {h_{\rm{m}}}}^0 {\int_\beta ^0 {\int_{t + \lambda }^t {{{{x}}^{\rm T}}(s)} } {{{R}}_1}{{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta + \frac{{h_{\rm{m}}^2}}{2}\int_{ - {h_{\rm{m}}}}^0 {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{R}}_2}\dot {{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta \\ &+ \frac{{(h_\Delta ^2 - h_{\rm{m}}^2)}}{2}\int_{ - {h_\Delta }}^{ - {h_{\rm{m}}}} {\int_\beta ^0 {\int_{t + \lambda }^t {{{{x}}^{\rm T}}(s)} } {{{R}}_3}{{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta + \frac{{(h_\Delta ^2 - h_{\rm{m}}^2)}}{2}\int_{ - {h_\Delta }}^{ - {h_{\rm{m}}}} {\int_\beta ^0 {\int_{t + \lambda }^t {{{\dot {{x}}}^{\rm T}}(s)} } {{{R}}_4}\dot {{x}}(s){\rm d}s{\rm d}\lambda } {\rm d}\beta \end{aligned}
    \begin{aligned} {{{V}}_{05}}({{x}}(t)) = \frac{{h_{\rm{m}}^3}}{6}\int_{ - {h_\Delta }}^0 {\int_\beta ^0 {\int_\lambda ^0 {\int_{t + \varphi }^t {{{\dot {{x}}}^{\rm T}}(s){{{U}}_1}\dot {{x}}(s)} } {\rm d}s{\rm d}\varphi } } {\rm d}\lambda {\rm d}\beta + \frac{{(h_\Delta ^3 - h_{\rm{m}}^3)}}{6}\int_{ - {h_\Delta }}^{ - {h_{\rm{m}}}} {\int_\beta ^0 {\int_\lambda ^0 {\int_{t + \varphi }^t {{{\dot {{x}}}^{\rm T}}(s){{{U}}_2}\dot {{x}}(s)} } {\rm d}s{\rm d}\varphi } } {\rm d}\lambda {\rm d}\beta \end{aligned}

    式中:

    \begin{split} {\zeta _0}(t) = &\left[ {\begin{array}{*{20}{c}} {{{x}}(t)}&{{{x}}(t - h(t))}&{{{x}}(t - {h_{\rm{m}}})}&{{{x}}(t - {h_\Delta })}&{\displaystyle\int_{t - {h_{\rm{m}}}}^t {{{x}}(s){\rm d}s} }&{\displaystyle\int_{t - h(t)}^{t - {h_{\rm{m}}}} {{{x}}(s){\rm d}s} }&{\displaystyle\int_{t - {h_\Delta }}^{t - h(t)} {{{x}}(s){\rm d}s} } \end{array}} \right.\\ &\!\!\!\!\!\!\!\left. {\begin{array}{*{20}{c}} {\displaystyle\int_{ - {h_{\rm{m}}}}^0 {\displaystyle\int_{t + \beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta }&{\displaystyle\int_{ - h(t)}^{ - {h_{\rm{m}}}} {\displaystyle\int_{t + \beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta }&{\displaystyle\int_{ - {h_\Delta }}^{ - h(t)} {\displaystyle\int_{t + \beta }^t {{{x}}(s)} {\rm d}s} {\rm d}\beta } \end{array}} \right], \end{split}

    {{{P}}_i}\left( {i = 1,2{\rm{,}}3{\rm{,}}4,5} \right),{{{Q}}_1},{{{Q}}_2},{{{U}}_1},{{{U}}_2},{{{X}}_j},{{{R}}_j}\left( {j = 1,2{\rm{,}}3{\rm{,}}4} \right),同式(6)中所定义的矩阵。利用同样的方法,可得

    {\dot {{V}}_0}({{x}}(t)) \text{≤} \zeta _0^{\rm T}(t)\left[ {\alpha {{{\varGamma}} _{01}} + (1 - \alpha ){{{\varGamma}} _{02}} + \varepsilon {{{\varGamma}} _{03}} + (1 - \varepsilon ){{{\varGamma}} _{04}}} \right]{\zeta _0}(t) (30)

    式中:

    \begin{split} &{{{\varGamma}} _{01}}{\rm{ = }}{{{\varGamma}} _1}{\rm{ = }} - {{{e}}_7}{{{X}}_3}{{e}}_7^{\rm T} - {\rm{(}}{{{e}}_2} - {{{e}}_4}{\rm{)}}{{{X}}_4}{\rm{(}}{{e}}_2^{\rm T} - e_4^{\rm T}{\rm{),}}\;{{{\varGamma}} _{02}}{\rm{ = }}{{{\varGamma}} _2}{\rm{ = }} - {{{e}}_6}{{{X}}_3}{{e}}_6^{\rm T} - {\rm{(}}{{{e}}_3} - {{{e}}_2}{\rm{)}}{{{X}}_4}{\rm{(}}{{e}}_3^{\rm T} - {{e}}_2^{\rm T}{\rm{),}}\\ &{{{\varGamma}} _{03}}{\rm{ = }} - {{{e}}_{10}}{{{R}}_3}{{e}}_{10}^{\rm T} - {\rm{((}}{h_\Delta } - {h_{\rm{m}}}{\rm{)}}{{{e}}_1} - {{{e}}_7}{\rm{)}}{{{R}}_4}{\rm{((}}{h_\Delta } - {h_{\rm{m}}}{\rm{)}}{{e}}_1^{\rm T} - {{e}}_7^{\rm T}{\rm{),}}\;{{{\varGamma}} _{04}}{\rm{ = }} - {{{e}}_9}{{{R}}_3}e_9^{\rm T} - {\rm{((}}{h_\Delta } - {h_{\rm{m}}}{\rm{)}}{{{e}}_1} - {{{e}}_6}{\rm{)}}{{{R}}_4}{\rm{((}}{h_\Delta } - {h_{\rm{m}}}{\rm{)}}{{e}}_1^{\rm T} - {{e}}_6^{\rm T}{\rm{)}}\text{。} \end{split}

    根据Lyapunov稳定性定理,如果\alpha {{{\varGamma}} _{01}} + (1 - \alpha ){{{\varGamma}} _{02}} + \varepsilon {{{\varGamma}} _{03}} + (1 - \varepsilon ){{{\varGamma}} _{04}} \text{<} 0,则存在充分小正数{\delta _{01}}使得{\dot {{V}}_0}({{x}}(t)) \text{<} - {\delta _{01}}{\left\| {x(t)} \right\|^2}\,成立,进而保证系统(5)渐近稳定。用同样的处理方法,可以得到

    {\dot {{V}}_0}({{x}}(t)) + {{z}}{(t)^{\rm T}}{{z}}(t) - {\rho ^2}{{{\omega}} ^{\rm T}}(t)\omega (t) \text{≤} \zeta _0^T(t)({{\varOmega}} + {{{{\varPsi}}} ^{\rm T}}{{{\varPsi}}} + \alpha {{{\varGamma}} _{01}} + (1 - \alpha ){{{\varGamma}} _{02}} + \varepsilon {{{\varGamma}} _{03}} + (1 - \varepsilon ){{{\varGamma}} _{04}}){\zeta _0}(t) (31)

    如果

    {{\varOmega}} + {{{{\varPsi}}} ^{\rm T}}{{{\varPsi}}} + \alpha {{{\varGamma}} _{01}} + (1 - \alpha ){{{\varGamma}} _{02}} + \varepsilon {{{\varGamma}} _{03}} + (1 - \varepsilon ){{{\varGamma}} _{04}} \text{<} 0 (32)

    那么

    {\dot {{V}}_0}({{x}}(t)) + {{z}}{(t)^{\rm T}}{{z}}(t) - {\rho ^2}{{{\omega}} ^{\rm T}}(t)\omega (t) \text{≤} 0 (33)

    从而闭环系统在零初始条件下具有给定的{H_\infty }扰动抑制水平\rho

    对式(19)或式(30)应用引理3,则其等价于式(6)。证毕。

    针对式(1)~(2)描述的系统,考虑如下一类不确定时滞系统:

    \left\{ \begin{array}{l} \dot {{x}}(t) = ({{A}} + \Delta {{A}}(t)){{x}}(t) + ({{{A}}_1} + \Delta {{{A}}_1}(t)){{x}}(t - h) + {{{B}}_u}{{u}}(t) + {{{B}}_\omega }{{\omega}} (t)\\ {{z}}(t) = {{Cx}}(t) + {{{C}}_d}{{x}}(t - h(t)) + {{{D}}_u}{{u}}(t) + {{{D}}_\omega }{{\omega}} (t)\\ {{x}}(t) = {{\varphi}} (t)\quad\forall t \in [ - {h_M},0] \end{array} \right. (34)

    式中:\Delta {{A}}(t)\Delta {{{A}}_1}(t)为具有结构不确定性的未知矩阵且满足:[\begin{array}{*{20}{c}} {\Delta {{A}}(t)}&{\Delta {{{A}}_1}(t)} \end{array}] = {{HF}}(t)[\begin{array}{*{20}{c}} {{{{E}}_0}}&{{{{E}}_1}} \end{array}]H{{{E}}_0}{{{E}}_1}为适当维数的常数矩阵,{{F}}(t)定义同{{{F}}_{\rm c}}(t)一样,也是未知时变矩阵。其他参数与系统(4)中定义一致。

    针对系统(34),本节在上一节有界实判据的基础上,给出非脆弱{H_\infty }控制器的设计方法。

    定理2对于给定的标量0 \text{<} {h_m} \text{<} {h_M}\mu {\lambda _1}{\lambda _2}{\lambda _1} \text{>} {\lambda _2})、\vartheta \text{>} 0且若存在正定对称矩阵{\tilde {{P}}_i}\left( {i = 1,2{\rm{,}}3{\rm{,}}4,5} \right){\tilde {{Q}}_1}{\tilde {{Q}}_2}{\tilde {{Q}}_3}{\tilde {{U}}_1}{\tilde {{U}}_2}{\tilde {{X}}_j}5{\tilde {{R}}_j}\left( {j = 1,2{\rm{,}}3{\rm{,}}4} \right),适当维数的自由矩阵{{\Xi}} {{Y}},使得如LMIs成立:

    \left[ {\begin{array}{*{20}{c}} {\tilde {\varPhi }}&{\tilde {{\varGamma}} _a^{\rm T}}&{\tilde {{\varGamma}} _E^{\rm T}} \\ *&{ - \vartheta {{I}}}&0 \\ *&*&{ - \vartheta {{I}}} \end{array}} \right] \text{<} 0 (35)

    则不确定系统(34)在非脆弱控制器(3)的作用下不仅渐近稳定,而且在零初始条件下具有给定的{H_\infty }扰动抑制水平\rho ,且控制器增益{{K}} = {{Y}}{\Xi ^{ - {\rm T}}}

    式中:

    \begin{aligned} {\tilde {{\varPhi}}} = &{\left( {{{\tilde {\varPhi} }_{i,j}}} \right)_{10 \times 10}}\\[-2pt] {{\tilde {{\varPhi}} }_{1,1}} =& {{\tilde {{P}}}_1}{{A}}{\rm{ + }}{{{A}}^{\rm T}}{{\tilde {{P}}}_1} + {{\tilde {{Q}}}_1} + h_m^2{{\tilde {{X}}}_1} + h_m^2{{{A}}^{\rm T}}{{\tilde {{X}}}_2}{{A}} - {{\tilde {{X}}}_2} + {({h_M} - {h_m})^2}{{\tilde {{X}}}_3} + {({h_M} - {h_m})^2}{{{A}}^{\rm T}}{{\tilde {{X}}}_4}{{A}} + \frac{{h_m^4}}{4}{{\tilde {{R}}}_1} + \frac{{h_m^4}}{4}{{{A}}^{\rm T}}{{\tilde {{R}}}_2}{{A}} - h_m^2{{\tilde {{R}}}_2}+\\[-2pt] & \frac{{{{(h_M^2 \!-\! h_m^2)}^2}}}{4}{{\tilde {{R}}}_3} \!+\! {{\tilde {{Q}}}_3} \!+\! \frac{{{{(h_M^2 - h_m^2)}^2}}}{4}{{{A}}^{\rm T}}{{\tilde {{R}}}_4}{{A}} \!-\! 3{({h_M} \!- \!{h_m})^2}{{\tilde {{R}}}_4} \!+\! \frac{{h_m^6}}{{36}}{{{A}}^{\rm T}}{{\tilde U}_1}{{A}}\! -\! \frac{{h_m^4}}{4}{{\tilde U}_1} \!+\! \frac{{{{(h_M^3 \!- \!h_m^3)}^2}}}{{36}}{{{A}}^{\rm T}}{{\tilde U}_2}{{A}} \!+\! \frac{{{{(h_M^2 \!-\! h_m^2)}^2}}}{4}{{\tilde U}_2}, \end{aligned}
    \begin{aligned} {\tilde {{\varPhi}} _{1,2}} =& h_m^2{{{A}}^{\rm T}}{\tilde {{X}}_2}{{B}} + {({h_M} - {h_m})^2}{{{A}}^{\rm T}}{\tilde {{X}}_4}{{B}} + \frac{{h_m^4}}{4}{{{A}}^{\rm T}}{\tilde {{R}}_2}{{B}} + \frac{{{{(h_M^2 - h_m^2)}^2}}}{4}{{{A}}^{\rm T}}{\tilde {{R}}_4}{{B}} + \frac{{h_m^6}}{{36}}{{{A}}^{\rm T}}{\tilde {{U}}_1}{{B}} + \frac{{{{(h_M^3 - h_m^3)}^2}}}{{36}}{{{A}}^{\rm T}}{\tilde {{U}}_2}{{B}},\\ {{\tilde {{\varPhi}} }_{1,3}} =& {{\tilde X}_2},{{\tilde {{\varPhi}} }_{1,4}} = 0,{{\tilde {{\varPhi}} }_{1,5}} = 2{{\tilde {{P}}}_2} + {h_m}{{\tilde {{R}}}_2},{{\tilde {{\varPhi}} }_{1,6}} = (2 - \varepsilon )({h_M} - {h_m}){{\tilde {{R}}}_4},{{\tilde {{\varPhi}} }_{1,7}} = (1 + \varepsilon )({h_M} - {h_m}){{\tilde {{R}}}_4},\\ {{\tilde {{\varPhi}} }_{1,8}} =& 2{h_m}{{\tilde {{P}}}_4} + \frac{{h_m^2}}{2}{{\tilde {{U}}}_1},{{\tilde {{\varPhi}} }_{1,9}} = {{\tilde {{\varPhi}} }_{1,10}} = 2({h_M} - {h_m}){{\tilde {{P}}}_5} + \frac{{(h_M^2 - h_m^2)}}{2}{{\tilde {{U}}}_2}\\ {{\tilde {{\varPhi}} }_{2,2}} =& h_m^2{{{B}}^{\rm T}}{{\tilde X}_2}{{B}} + {({h_M} - {h_m})^2}{{{B}}^{\rm T}}{{\tilde X}_4}{{B}} - {{\tilde X}_4} + \frac{{h_m^4}}{4}{{{B}}^{\rm T}}{{\tilde {{R}}}_2}{{B}} + \frac{{{{(h_M^2 - h_m^2)}^2}}}{4}{{{B}}^{\rm T}}{{\tilde {{R}}}_4}{{B}} + \frac{{h_m^6}}{{36}}{{{B}}^{\rm T}}{{\tilde {{U}}}_1}{{B}} + \frac{{{{(h_M^3 - h_m^3)}^2}}}{{36}}{{{B}}^{\rm T}}{{\tilde {{U}}}_2}{{B}} - \mu {{\tilde Q}_3},\\ {{\tilde {{\varPhi}} }_{2,3}} = & - (\alpha - 2){{\tilde {{X}}}_4},{{\tilde {{\varPhi}} }_{2,4}} = (1 + \alpha ){{\tilde {{X}}}_4},{{\tilde {{\varPhi}} }_{2,5}} = {{\tilde {{\varPhi}} }_{2,6}} = {{\tilde {{\varPhi}} }_{2,7}} = {{\tilde {{\varPhi}} }_{2,8}} = {{\tilde {{\varPhi}} }_{2,9}} = {{\tilde {{\varPhi}} }_{2,10}} = 0,\\ {{\tilde {{\varPhi}} }_{3,3}} =& {{\tilde {{Q}}}_2} - {{\tilde {{Q}}}_1} - {{\tilde {{X}}}_2} + (\alpha - 2){{\tilde {{X}}}_4},{{\tilde {{\varPhi}} }_{3,4}} = 0,{{\tilde {{\varPhi}} }_{3,5}} = - 2{{\tilde P}_2},{{\tilde {{\varPhi}} }_{3,6}} = {{\tilde {{\varPhi}} }_{3,7}} = 2{{\tilde P}_3},{{\tilde {{\varPhi}} }_{3,8}} = {{\tilde {{\varPhi}} }_{3,9}} = {{\tilde {{\varPhi}} }_{3,10}} = 0,\\ {{\tilde {{\varPhi}} }_{4,4}} =& - {{\tilde {{Q}}}_2} - (1 + \alpha ){{\tilde {{X}}}_4},{{\tilde {{\varPhi}} }_{4,5}} = 0,{{\tilde {{\varPhi}} }_{4,6}} = {{\tilde {{\varPhi}} }_{4,7}} = - 2{{\tilde {{P}}}_3},{{\tilde {{\varPhi}} }_{4,8}} = {{\tilde {{\varPhi}} }_{4,9}} = {{\tilde {{\varPhi}} }_{4,10}} = 0,{{\tilde {{\varPhi}} }_{5,5}} = - {{\tilde {{X}}}_1} - {{\tilde {{R}}}_2},\\ {{\tilde {{\varPhi}} }_{5,6}} =& {{\tilde {{\varPhi}} }_{5,7}} = 0,{{\tilde {{\varPhi}} }_{5,8}} = - 2{{\tilde {{P}}}_4},{{\tilde {{\varPhi}} }_{5,9}} = {{\tilde {{\varPhi}} }_{5,10}} = 0,{{\tilde {{\varPhi}} }_{6,6}} = (\alpha - 2){{\tilde {{X}}}_3} - (2 - \varepsilon ){{\tilde {{R}}}_4},{{\tilde {{\varPhi}} }_{6,7}} = {{\tilde {{\varPhi}} }_{6,8}} = 0,\\ {{\tilde {{\varPhi}} }_{6,9}} =& {{\tilde {{\varPhi}} }_{6,10}} = - 2{{\tilde {{P}}}_5},{{\tilde {{\varPhi}} }_{7,7}} = - (\alpha + 1){{\tilde {{X}}}_3} - (1 + \varepsilon ){{\tilde {{R}}}_4},{{\tilde {{\varPhi}} }_{7,8}} = 0,{{\tilde {{\varPhi}} }_{7,9}} = {{\tilde {{\varPhi}} }_{7,10}} = - 2{{\tilde {{P}}}_5},{{\tilde {{\varPhi}} }_{8,8}} = - {{\tilde {{R}}}_1} - {{\tilde {{U}}}_1},\\ {{\tilde {{\varPhi}} }_{8,9}} =& {{\tilde {{\varPhi}} }_{8,10}} = 0,{{\tilde {{\varPhi}} }_{9,9}} = - (2 - \varepsilon ){{\tilde {{R}}}_3} - {{\tilde {{U}}}_2},{{\tilde {{\varPhi}} }_{9,10}} = - {{\tilde {{U}}}_2},{{\tilde {{\varPhi}} }_{10,10}} = (1 + \varepsilon ){{\tilde {{R}}}_3} - {{\tilde {{U}}}_2},\alpha = \frac{{h(t) - {h_m}}}{{{h_M} - {h_m}}},\varepsilon = \frac{{h{{(t)}^2} - h_m^2}}{{h_M^2 - h_m^2}},\\ {{{\tilde \varGamma }}_a} =& \left[ {\begin{array}{*{20}{c}} {{\vartheta}} &0&0&0&0&0&{{\vartheta }} \end{array}} \right]H,\;{{\tilde \varGamma }_E}{\rm{ = }}\left[ {\begin{array}{*{20}{c}} {{{{E}}_0}{\Xi ^{\rm T}}}&0&{{{{E}}_1}{\Xi ^{\rm T}}}&0&0&0&0 \end{array}} \right] \end{aligned}

    证明:由于定理1中式(6)给出的条件为非线性矩阵不等式,不能直接得到控制器的解。下面给出控制器的设计方法,首先将式(6)中的不确定项(即含\Delta {{K}}项)分离,即

    {{{\varPhi}} '} + {{{\varGamma}} _a}{{{F}}_a}(t){{{\varGamma}} _E} + {{\varGamma}} _E^{\rm T}{{F}}_a^{\rm T}(t){{\varGamma}} _a^{\rm T} \text{<} 0 (36)

    式中: {{{\varPhi}} '}{{\varPhi}} 中分离不确定项(含\Delta {{K}}项)所得结果。由引理4可得

    {{{\varPhi}} '} + {\vartheta ^{ - 1}}{{{\varGamma}} _a}{{\varGamma}} _a^{\rm T} + \vartheta {{\varGamma}} _E^{\rm T}{{{\varGamma}} _E} \text{<} 0 (37)

    式中:{{{\varGamma}} _E} = \left[ {\begin{array}{*{20}{c}} {{{{E}}_c}{{{\varXi}} ^{\rm T}}}&0&0&0&0&0&0&0&0&0 \end{array}} \right].

    进而对式(37)应用Schur补可得

    \left[ {\begin{array}{*{20}{c}} {{{{\varPhi}} '}}&{{{\varGamma}} _a^{\rm T}}&{\vartheta {{\varGamma}} _E^{\rm T}} \\ *&{ - \vartheta {{I}}}&0 \\ *&*&{ - \vartheta {{I}}} \end{array}} \right] \text{<} 0 (38)

    由于{{\varXi}} 为非奇异矩阵,因而可以求得{{{\varXi}} ^{ - 1}},对式(38)两边左乘{{{\varPsi}}} ,右乘其转置即{{{{\varPsi}}} ^{\rm T}},其中:

    {{\varPsi}} = {\rm{diag}}\left\{ \begin{array}{*{20}{c}} {\underbrace {\begin{array}{*{20}{c}} {{\varXi}} & \cdots &{{\varXi}} \end{array}}_7}&{{I}}&{{I}}&{{\varXi}} &{{\vartheta ^{ - 1}}{{I}}}&{{\vartheta ^{ - 1}}{{I}}} \end{array}\right\} ,

    {{P}_i} = {{\varXi}} {{P}_i}{{{\varXi}} ^{\rm T}}\left( {i = 1,2,3,4,5} \right),{\tilde {{Q}}_j} = {{\varXi}} {\tilde {{Q}}_j}{{{\varXi}} ^{\rm T}}\left( {j = 1,2,3} \right),{U}_k = {{\varXi}} {U}_k{{{\varXi}} ^{\rm T}}\left( {k = 1,2} \right),{\tilde {{X}}_l} = {{\varXi}} {\tilde {{X}}_l}{{{\varXi}} ^{\rm T}},{\tilde {{R}}_l} = {{\varXi}} {\tilde {{R}}_l}{{{\varXi}} ^{\rm T}}\left( {l{\rm{ = }}1,2,3,4} \right), Y= T。通过替换容易得到定理2的条件,证毕。

    本节将上节提出的非脆弱{H_\infty }控制器的设计方法运用到液体火箭发动机燃烧过程当中,模拟分析系统的稳定性能以及系统参数摄动的镇定性能。

    MADB (maximum allowable delay bound) 定义为保证系统稳定的最大允许时滞上界值,是时滞系统稳定性结论保守性最普遍的衡量标准;MAPI (minimum allowable performance index) 定义为保证系统稳定的最小允许性能指标值,是时滞系统在零初始条件下所具有的{H_\infty }扰动抑制水平的衡量标准。

    下面考虑一类具有区间变时滞的线性系统,形如式(1)所示,其系统参数如下:

    \begin{array}{l} {{A}} = \left[ {\begin{array}{*{20}{c}} { - 0.623\;8}&{ - 1.013\;2}\\ {2.011\;6}&{ - 0.210\;6} \end{array}} \right],{{{A}}_1} = \left[ {\begin{array}{*{20}{c}} { - 0.501\;1}&{ - 0.787\;1}\\ { - 0.300\;2}&{0.523\;1} \end{array}} \right],{{{B}}_\omega } = \left[ {\begin{array}{*{20}{c}} { - 0.432\;6}&{0.125\;3}\\ { - 1.665\;6}&{0.287\;7} \end{array}} \right]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;{{C}} = \left[ {\begin{array}{*{20}{c}} {0.213\;4}&{ - 0.019\;1}\\ {0.111\;9}&{ - 0.166\;5} \end{array}} \right],{{{C}}_d} = \left[ {\begin{array}{*{20}{c}} {0.081\;6}&{0.129\;0}\\ {0.071\;2}&{0.066\;9} \end{array}} \right],{{{D}}_\omega } = \left[ {\begin{array}{*{20}{c}} 0&0\\ 0&0 \end{array}} \right] \end{array}

    在该数值例子中,考虑两个性能指标,即{H_\infty }性能指标\rho 和MADB值{h_M}。根据定理1,当时滞变化率\mu {\rm{ = }}0{h_m}{\rm{ = }}0时,针对不同的{H_\infty }性能指标\rho 表1模拟给出相应的MADB值;针对不同的MADB值,表2模拟给出相应的{H_\infty }性能指标\rho

    表  1  不同的H{_\infty }性能指标ρ,模拟给出的MADB值hM
    Table  1.  The maximum allowable delay bound hM for a given ρ
    来源hM
    ρ=2.0ρ=2.5ρ=3.0ρ=3.5ρ=4.0
    文献[16]0.405 70.466 00.504 70.531 60.551 5
    文献[17]0.405 70.466 00.504 60.531 60.551 5
    文献[18]0.420 30.477 90.514 60.540 10.558 9
    文献[4]0.473 40.523 70.554 50.575 40.590 4
    文献[19]0.662 00.704 00.730 00.747 00.759 5
    定理10.957 11.013 61.056 51.081 21.092 7
    下载: 导出CSV 
    | 显示表格
    表  2  不同的MADB值hM,仿真给出的MAPI值ρ
    Table  2.  The minimum allowable performance index ρ for a given hM
    来源ρ
    hM=0.1hM=0.2hM=0.3hM=0.4hM=0.5
    文献[16]1.071 41.242 61.506 71.963 42.298 1
    文献[17]1.071 41.242 51.506 71.963 42.298 1
    文献[18]1.057 71.211 21.451 51.873 32.775 7
    文献[19]0.933 10.952 51.021 61.120 41.284 3
    定理10.815 60.853 20.924 51.042 81.123 9
    下载: 导出CSV 
    | 显示表格

    通过表12的比较可以发现,对于指定的{H_\infty }性能指标\rho ,由定理1可以得出相应的MADB值。相比文献[4,16-19],本文所提出的时滞相关有界实判据扩大了系统稳定的最大允许时滞上界范围,具有更低的保守性;另一方面,对于指定的MADB值{h_M},我们也可以求得相应的MAPI值。相比文献[16-19],本文所提出的判据可以获得保证系统稳定的更小更佳{H_\infty }性能指标\rho 值。

    由于压力指数\lambda 和时滞参数\delta 是系统中最难确定的两个参数,这里只考虑系统对这两个参数的鲁棒性,并以振荡最强的状态变量{{{x}}_2}(t)为研究对象。

    4.2.1   压力指数\lambda 不确定

    当压力指数\lambda 不确定时,系统矩阵AA1的摄动值如下:

    \begin{aligned}\Delta {{A}} =& \left[ {\begin{array}{*{20}{c}} {\lambda - {\lambda _0}}&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\Delta {\lambda _{\max }}} \\ 0 \\ 0 \\ 0 \end{array}} \right]\frac{{\Delta \lambda }}{{\Delta {\lambda _{\max }}}}\left[ {\begin{array}{*{20}{c}} 1&0&0&0 \end{array}} \right],\\ \Delta {{{A}}_1} =& \left[ {\begin{array}{*{20}{c}} {\lambda - {\lambda _0}}&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \\ 0&0&0&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\Delta {\lambda _{\max }}} \\ 0 \\ 0 \\ 0 \end{array}} \right]\frac{{\Delta \lambda }}{{\Delta {\lambda _{\max }}}}\left[ {\begin{array}{*{20}{c}} { - 1}&0&0&0 \end{array}} \right] \end{aligned}

    式中:\Delta {\lambda _{\max }} = \max \left\{ {\left| {{\lambda _{\min }} - {\lambda _0}} \right|,\left| {{\lambda _{\max }} - {\lambda _0}} \right|} \right\},由此可得{{H}} = {\left[ {\begin{array}{*{20}{c}} {\Delta {\lambda _{\max }}}&0&0&0 \end{array}} \right]^{\rm T}}{{{E}}_0} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0 \end{array}} \right]{{{E}}_1} = - {{{E}}_0}

    情形1:当\Delta {{K}} = 0时,则本文设计的非脆弱控制器就成为一般的{H_\infty }反馈控制器,取\delta = 0.8{\lambda _0} = 1\Delta {\lambda _{\max }} = 0.2,性能指标\kappa = 0.6{{{B}}_\omega } = {[\begin{array}{*{20}{c}} 0&0&0&1 \end{array}]^{\rm T}}{{C}} = [\begin{array}{*{20}{c}} 1&0&0&0 \end{array}]{{{C}}_d} = 1{{{D}}_\omega } = 0,则由定理1可求{H_\infty }状态反馈控制器的增益矩阵为:

    {{{K}}_1} = \left[ {\begin{array}{*{20}{c}} { - {\rm{0}}{\rm{.426\;8}}}&{{\rm{0}}{\rm{.060\;8}}}&{{\rm{0}}{\rm{.299\;4}}}&{ - {\rm{0}}{\rm{.047\;0}}} \end{array}} \right]

    情形2:当\Delta {{K}} \ne 0时,控制器增益摄动参数为{{{D}}_c} = 1{{{E}}_c} = [\begin{array}{*{20}{c}} 1&0&0&0 \end{array}],取与情形1中相同的系统参数,则由定理1可求得非脆弱控制器的增益矩阵为:

    {{{K}}_2} = \left[ {\begin{array}{*{20}{c}} { - {\rm{0}}{\rm{.381\;7}}}&{ - 1.051\;2}&{0.850\;2}&{ - 1.872\;6} \end{array}} \right]

    将非脆弱控制器代入燃烧过程方程,系统的状态响应曲线如图2所示。

    图  2  非脆弱H控制器作用下系统的状态响应
    Figure  2.  Response of system under non-fragile H controller

    图2可知,当系统参数和控制器增益存在不确定性时,该系统不仅具有鲁棒性而且是非脆弱的,燃烧过程得到了较好的镇定,系统能满足一定的性能指标要求,控制器具有足够的调节余地,系统的可靠性更高。

    下面以状态变量{{{x}}_2}(t)为研究对象,分析比较本文设计的非脆弱{H_\infty }反馈控制器和一般{H_\infty }反馈控制器在燃烧过程中的镇定效果。在同样的条件下,将控制器{{{K}}_1}{{{K}}_2}代入燃烧过程,可得这两种控制器作用下系统状态变量{{{x}}_2}(t)的响应曲线,如图3所示。

    图  3  不同控制器作用下系统状态{x_2}(t)的响应
    Figure  3.  Response of {x_2}(t) under different controller

    图3可知,在相同的条件下,本文设计的非脆弱{H_\infty }状态反馈控制器相比一般{H_\infty }状态反馈控制器,允许控制器增益存在一定的摄动,具有更强的鲁棒性。应用于燃烧过程时,其系统状态较为平稳,振幅较小,镇定效果优于一般{H_\infty }状态反馈控制器。

    4.2.2   时滞参数\delta 的鲁棒性能

    当系统时滞参数\delta 变化时,考察控制器的镇定性能,同样取性能指标\kappa = 0.6,当控制器存在增益摄动{{{D}}_{\rm c}} = 1{{{E}}_c} = [\begin{array}{*{20}{c}} 1&0&0&0 \end{array}]时,图4给出了不同的时滞参数\delta 下系统状态变量x2(t)的响应曲线图。

    图  4  控制器对时滞参数\delta 的鲁棒性
    Figure  4.  Robust performance of controller to variation of \delta

    图4可以清晰地看到,在本文设计控制器作用下,当时滞参数δ逐渐增大时,燃烧过程中状态变量x2(t)逐渐趋于不稳定,但是在\delta \in [\begin{array}{*{20}{c}}0, {1.1}\end{array}]内,燃烧过程状态变量x2(t)仍然是可镇定的;需要说明的是,上面的模拟是在{{{D}}_{\rm c}} = 1并且{{{E}}_{\rm c}} = [\begin{array}{*{20}{c}} 1&0&0&0 \end{array}]的情形下进行的,也就是说本文所设计控制器增益值满足一定摄动性,因而提升了燃烧过程的可靠性和鲁棒性。

    (1)通过构造包含四重积分项的L-K泛函以及采用新颖的积分不等式来界定交叉项,给出了保证燃烧过程稳定并具有给定{H_\infty }性能指标的时滞相关有界实引理;

    (2)在有界实引理的基础上,通过求解线性矩阵不等式的可行解来获得控制器的参数化表达式,进而设计了一种无需参数调整并易于求解的鲁棒非脆弱{H_\infty }控制器;

    (3)通过仿真实例对比验证了所提出的时滞相关有界实引理的有效性以及所设计的鲁棒非脆弱{H_\infty }控制器的优越性。

  • 图  1  尖卵形弹体和头部对称刻槽弹体结构工程图

    Figure  1.  Schemes of ogive-nose projectile and symmetrical grooved-nose projectile

    图  2  尖卵形弹体和头部对称刻槽弹体实物图

    Figure  2.  Photograph of ogive-nose projectile and symmetrical grooved-nose projectile

    图  3  侵彻实验布局

    Figure  3.  Sketch of projectile penetration test

    图  4  侵彻深度实验结果及其二次多项式拟合曲线

    Figure  4.  Experimental data and fitting curves of penetration depth

    图  5  回收弹体情况

    Projectiles after penetration tests

    图  6  侵彻后靶体破坏情况

    Figure  6.  Damages of targets after penetration tests

    图  7  侵彻后靶体材料挤出现象

    Figure  7.  Phenomenon of target material extrusion

    图  8  笛卡尔坐标系下头部对称刻槽弹体结构示意图

    Figure  8.  Schematic diagram of symmetrical grooved-nose projectile in Cartesian coordinate

    图  9  头部对称刻槽弹体剖面示意图

    Figure  9.  Sectional view of symmetrical grooved-nose projectile

    图  10  对称槽区域的靶体裂纹示意图

    Figure  10.  Crack of symmetrical grooved-nose area

    图  11  理论计算与实验侵彻深度结果对比

    Figure  11.  Comparison of penetration depth between theoretical and experimental results

    表  1  尖卵形弹体和头部对称刻槽弹体侵彻深度实验对比

    Table  1.   Experiment data of DOP between ogive-nose projectile and symmetrical grooved-nose projectile

    实验号 尖卵形弹体 头部对称刻槽弹体
    侵彻速度v0/(m·s-1) 质量m/g 侵彻深度P/mm 侵彻速度v0/(m·s-1) 质量m/g 侵彻深度P/mm
    1 417 65.5 35.6 373 66.3 36.2
    2 501 66.3 41.2 453 66.0 45.1
    3 615 66.4 59.8 615 66.3 67.2
    4 676 65.7 63.5 648 66.2 71.2
    5 719 65.6 73.0 691 66.4 79.2
    6 742 65.6 77.8 745 66.0 89.0
    7 793 65.9 86.4 768 65.7 95.2
    下载: 导出CSV
  • [1] YANKELEVSKY D Z, GLUCK J.Nose shape effect on high velocity soil penetration[J].International Journal of Mechanical Sciences, 1980, 22(5):297-311.DOI: 10.1016/0020-7403(80)90030-2.
    [2] JONES S E, RULE W K.On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction[J].International Journal of Impact Engineering, 2000, 24(4):403-415.DOI: 10.1016/S0734-743X(99)00157-8.
    [3] CHEN X W, LI Q M.Deep penetration of a non-deformable projectile with different geometrical characteristics[J].International Journal of Impact Engineering, 2002, 27(6):619-637.DOI: 10.1016/S0734-743X(02)00005-2.
    [4] LI Q M, CHEN X W.Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile[J].International Journal of Impact Engineering, 2003, 28(1):93-116.DOI: 10.1016/S0734-743X(02)00037-4.
    [5] ZHAO J, CHEN X W, JIN F N, et al.Depth of penetration of high-speed penetrator with including the effect of mass abrasion[J].International Journal of Impact Engineering, 2010, 37(9):971-979.DOI: 10.1016/j.ijimpeng.2010.03.008.
    [6] 刘坚成, 黄风雷, 皮爱国, 等.异型头部弹体增强侵彻性能机理研究[J].爆炸与冲击, 2014, 34(4):409-414.DOI: 10.11883/1001-1455(2014)04-0409-06.

    LIU Jiancheng, HUANG Fenglei, PI Aiguo, et al.On enhanced penetration performance of modified nose projectiles[J].Explosion and Shock Waves, 2014, 34(4):409-414.DOI: 10.11883/1001-1455(2014)04-0409-06.
    [7] LIU J, PI A, HUANG F.Penetration performance of double-ogive-nose projectiles[J].International Journal of Impact Engineering, 2015, 84:13-23.DOI: 10.1016/j.ijimpeng.2015.05.003.
    [8] BEN-DOR G, DUBINSKY A, ELPERIN T.Applied high-speed plate penetration dynamics[M].Netherlands:Springer, 2006:111-137.
    [9] BEN-DOR G, DUBINSKY A, ELPERIN T.High-speed penetration modeling and shape optimization of the projectile penetrating into concrete shields[J].Mechanics Based Design of Structures and Machines, 2009, 37(4):538-549.DOI: 10.1080/15397730903272830.
    [10] MAYERSAK J.Kinetic energy cavity penetrator weapon: U.S.Patent 20040231552[P].2003-05-23.
    [11] 柴传国.异形头部弹体对混凝土靶的侵彻效应研究[D].北京: 北京理工大学, 2014: 13-66.
    [12] YAKUNINA G Y.The three-dimensional motion of optimal pyramidal bodies[J].Journal of Applied Mathematics and Mechanics, 2005, 69(2):234-243.DOI: 10.1016/j.jappmathmech.2005.03.009.
    [13] YAKUNINA G Y.Optimum three-dimensional hypersonic bodies within the framework of a local interaction model[C]//International Space Planes and Hypersonic Systems and Technologies Conference.Kyoto, Japan, 2001.
    [14] YAKUNNA G Y.Effects of sliding friction on the optimal 3D-nose geometry of rigid rods penetrating media[J].Optimization and Engineering, 2005, 6(3):315-338.DOI: 10.1007/s11081-005-1742-6.
    [15] 范少博, 陈智刚, 侯秀成, 等.旋进侵彻弹丸数值模拟与试验研究[J].弹箭与制导学报, 2013(1):80-83.DOI: 10.15892/j.cnki.djzdxb.2013.01.041.

    FAN Shaobo, CHEN Zhigang, HOU Xiucheng, et al.Numerical simulation and experimental study on novel rotating penetration projectile[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2013(1):80-83.DOI: 10.15892/j.cnki.djzdxb.2013.01.041.
    [16] ERENGIL M E, CARGILE D J.Advanced projectile concept for high speed penetration of concrete targets[C]//Proceedings of 20th International Symposium on Ballistics.Orlando, 2002.
    [17] 梁斌, 陈小伟, 姬永强, 等.先进钻地弹概念弹的次口径高速深侵彻实验研究[J].爆炸与冲击, 2008, 28(1):1-9.DOI: 10.3321/j.issn:1001-1455.2008.01.001.

    LIANG Bin, CHEN Xiaowei, JI Yongqiang, et al.Experimental study on deep penetration of reduced-scale advanced earth penetrating weapon[J].Explosion and Shock Waves, 2008, 28(1):1-9.DOI: 10.3321/j.issn:1001-1455.2008.01.001.
    [18] WU H, WANG Y, HUANG F.Penetration concrete targets experiments with non-ideal & high velocity between 800 and 1100 m/s[J].International Journal of Modern Physics B, 2008, 22(09n11):1087-1093.DOI: 10.1142/S0217979208046360.
    [19] HE L L, CHEN X W, WANG Z H.Study on the penetration performance of concept projectile for high-speed penetration(CPHP)[J].International Journal of Impact Engineering, 2016, 94:1-12.DOI: 10.1016/j.ijimpeng.2016.03.010.
    [20] AMON J, SCHWARTZ A, BRANDEIS Y.Missile warhead: U.S.Patent 9, 267, 774[P].2016-02-23.
    [21] 庞春旭, 何勇, 沈晓军, 等.刻槽弹体旋转侵彻铝靶试验与数值模拟[J].弹道学报, 2015(1):70-75.DOI: 10.3969/j.issn.1004-499X.2015.01.014.

    PANG Chunxu, HE Yong, SHEN Xiaojun, et al.Experimental investigation and numerical simulation on grooved projectile rotationally penetration into aluminum target[J].Journal of Ballistics, 2015(1):70-75.DOI: 10.3969/j.issn.1004-499X.2015.01.014.
    [22] 庞春旭, 何勇, 沈晓军, 等.刻槽弹体旋转侵彻混凝土效应试验研究[J].兵工学报, 2015, 36(1):46-52.DOI: 10.3969/j.issn.1000-1093.2015.01.007.

    PANG Chunxu, HE Yong, SHEN Xiaojun, et al.Experimental investigation on penetration of grooved projectiles into concrete targets[J].Acta Armamentarii, 2015, 36(1):46-52.DOI: 10.3969/j.issn.1000-1093.2015.01.007.
    [23] FORRESTAL M J, WARREN T L.Penetration equations for ogive-nose rods into aluminum targets[J].International Journal of Impact Engineering, 2008, 35(8):727-730.DOI: 10.1016/j.ijimpeng.2007.11.002.
    [24] LUK V K, FORRESTAL M J, AMOS D E.Dynamic spherical cavity expansion of strain-hardening materials[J].Journal of Applied Mechanics, 1991, 58(1):1-6.DOI: 10.1115/1.2897150.
    [25] CHEREPANOV G P.An analysis of two models of super-deep penetration[J].Engineering Fracture Mechanics, 1996, 53(3):399-423.DOI: 10.1016/0013-7944(95)00104-2.
    [26] CHEREPANOV G P.Super-deep penetration[J].Engineering Fracture Mechanics, 1994, 47(5):691-713.DOI: 10.1016/0013-7944(94)90160-0.
  • 期刊类型引用(1)

    1. 付兴建,郭宏梅. 小脑神经网络用于不确定时滞系统的鲁棒非脆弱控制. 西安科技大学学报. 2020(03): 477-483 . 百度学术

    其他类型引用(4)

  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  5688
  • HTML全文浏览量:  1318
  • PDF下载量:  51
  • 被引次数: 5
出版历程
  • 收稿日期:  2017-11-17
  • 修回日期:  2018-02-09
  • 刊出日期:  2018-11-25

目录

/

返回文章
返回