Dispersion properties and rapid calculation of fragment force field of D-shaped fragmentation warhead
-
摘要: 破片威力场的快速计算是实现战斗部对目标快速评估的关键之一,本文中分别对型面宽度为 90°、120° 和 150° 三种 D 型战斗部的破片飞散规律进行实验和数值模拟研究,考察型面宽度和起爆模式对破片威力场的影响规律。结果表明:三种结构中包含 90% 破片的方位角分别为 21.16°、23.88° 和 30.08°;偏心线起爆和双端面偏心起爆,在 20° 方位角内破片总能量分别是周向均匀战斗部中心起爆能量的 3.4 倍和 3.3 倍;基于三种典型型面的破片威力场公式,通过构建二次插值函数获得其他型面战斗部的破片分布,为D型战斗部破片威力场的快速计算提供了一种有效方法。Abstract: Rapid calculation of the fragment force field is a key technique for quick damage assessment of warhead to target. In this work we carried out experiment and simulation on the dispersion patterns of three D-shaped warheads with the angle 90°, 120° and 150° and investigated the influences of the shape’s width and detonation mode on the distribution of the fragment force field. The results showed that 90% of the fragments in the three structures had azimuths of 21.16°, 23.88° and 30.08°, respectively; the eccentric line detonation and the two ends’ eccentric detonations were found to be better detonation modes, and the total energy of the fragments in 20° azimuth was respectively 3.4 and 3.3 times higher than the energy of the conventional fragmentation warhead. Based on the rapid calculation formulas of the fragment field of three typical shapes, we proposed that the force field of differently shaped warheads were obtained by constructing the quadratic interpolation function, providing an effective method for rapidly analyzing the distribution of the fragment field in the D-shaped warhead.
-
Key words:
- D-shaped warhead /
- fragment dispersion /
- detonation mode /
- rapid calculation
-
表 1 不同起爆模式下破片飞散特性
Table 1. Dispersion characteristic of fragment in different detonation modes
O1点起爆 O2点起爆 O3点起爆 编号 sinθ2 sinθ3 编号 sinθ2 sinθ3 编号 sinθ2 sinθ3 1 0.046 62 0.006 64 1 0.069 83 0.006 37 1 0.138 65 0.008 71 2 0.092 93 0.013 19 2 0.138 65 0.015 38 2 0.269 63 0.019 75 3 0.138 65 0.020 16 3 0.205 52 0.022 61 3 0.387 23 0.027 43 4 0.183 5 0.028 69 4 0.269 63 0.030 86 4 0.488 6 0.034 72 5 0.227 23 0.036 57 5 0.330 35 0.040 54 5 0.573 46 0.042 65 6 0.269 63 0.050 11 6 0.387 23 0.054 03 6 0.643 19 0.052 04 7 0.310 52 0.062 52 7 0.440 02 0.076 77 7 0.699 93 0.064 89 8 0.349 75 0.073 69 8 0.488 6 0.088 97 8 0.745 94 0.083 76 9 0.387 23 0.095 91 9 0.533 04 0.105 17 9 0.783 29 0.110 5 10 0.422 89 0.117 78 10 0.573 46 0.132 98 10 0.813 73 0.142 42 11 0.456 68 0.150 4 11 0.610 09 0.166 94 11 0.838 69 0.172 66 -
[1] LLOYD R M. Conventional warhead systems physics and engineering design [M]. Washington: The American Institute of Aeronautics and Astronautics, 1998: 193−243. [2] KENNEDY D R. A retrospective of the past years of warhead research and development—the pre- and present computer model era [C] // 19th International Symposium of Ballistics. Interlaken, Switzerland, 2001: 631−638. [3] SAM W. Relative performance of anti-air missile warheads [C] // 19th international Symposium on Ballistics. Interlaken, Switzerland, 2001: 623−630. [4] WANG M F, LU F Y, LI X Y, et al. A formula for calculating the velocities of fragments from velocity enhanced warhead [J]. Propellants, Explosives, Pyrotechnics, 2013, 38(2): 232–237. DOI: 10.1002/prep.201200025. [5] 王力, 韩峰, 陈放, 等. 偏心对称起爆战斗部破片初速的增益 [J]. 爆炸与冲击, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06WANG Li, HAN Feng, CHEN Fang, et al. Fragments velocity of eccentric warhead with double symmetric detonators [J]. Explosion and Shock Waves, 2016, 36(1): 69–74. DOI: 10.11883/1001-1455(2016)01-0069-06 [6] 龚柏林, 卢芳云, 李翔宇. D型预制破片战斗部破片飞散过程的数值模拟 [J]. 弹箭与制导学报, 2010, 30(1): 88–90 doi: 10.3969/j.issn.1673-9728.2010.01.027GONG Bolin, LU Fangyun, LI Xiangyu. Simulation and study on the fragment ejection process of premade D-shape warhead [J]. Journal of Projectile, Rockets, Missiles and Guidance, 2010, 30(1): 88–90 doi: 10.3969/j.issn.1673-9728.2010.01.027 [7] 王马法, 卢芳云, 李翔宇, 等. 非轴对称结构约束下破片飞散特性的实验和仿真研究 [J]. 振动与冲击, 2016, 35(15): 122–126. DOI: 10.13465/j.cnki.jvs.2016.15.020WANG Mafa, LU Fangyu, LI Xiangyu, et al. Test and simulation for dispersion properties of fragments from asymmetric structures [J]. Jounal of Vibration and Shock, 2016, 35(15): 122–126. DOI: 10.13465/j.cnki.jvs.2016.15.020 [8] WANG Mafa, LU Fangyun, LI Xiangyu, et al. A new method to estimate the projection angles of fragments from a D-shape configuration [C] // International Conference of Applied Mechanics and Materials, 2013, 275: 122−127. DOI: 10.4028/www.scientific.net/AMM.275-277.122. [9] 李振铎, 李翔宇, 卢芳云, 等. D字形预制破片战斗部破片能量分布特性研究 [J]. 弹箭与制导学报, 2016, 36(1): 55–58. DOI: 10.15892/j.cnki.djzdxb.2016.01.014LI Zhenduo, LI Xiangyu, LU Fangyu, et al. Study on fragment energy distribution characteristics of premade D-shape warhead [J]. Journal of Projectile, Rockets, Missiles and Guidance, 2016, 36(1): 55–58. DOI: 10.15892/j.cnki.djzdxb.2016.01.014 [10] 黄广炎, 冯顺山, 刘沛清. 战斗部破片对目标打击迹线的计算方法 [J]. 爆炸与冲击, 2010, 30(4): 413–418. DOI: 10.15892/j.cnki.djzdxb.2016.01.014H U A N G G u a n g y a n , F E N G S h u n s h a n , L I U P e i q i n g . A v i s u a l C ~ ( + + ) a n d M a t l a b - b a s e d c o m p u t a t i o n a l m e t h o d f o r s h o t - l i n e s o f w a r h e a d f r a g m e n t s t o a t a r g e t [ J ] . E x p l o s i o n a n d S h o c k W a v e s , 2 0 1 0 , 3 0 ( 4 ) : 4 1 3 – 4 1 8 . D O I : [11] ALESSANDRO T, GIANFILIPPO G, GABRIELE L, et al. Assessment of fragment projection hazard: probability distributions for the initial direction of fragments [J]. Journal of Hazardous Materials, 2014, 279: 418–427. doi: 10.1016/j.jhazmat.2014.07.034 [12] QIAN L X, LIU T, ZHANG S Q, et al. Fragment shot-line model for air defence warhead [J]. Propellants Explosives Pyrotechnics, 2000, 22: 92–98.