• ISSN 1001-1455  CN 51-1148/O3
  • EI、Scopus、CA、JST收录
  • 力学类中文核心期刊
  • 中国科技核心期刊、CSCD统计源期刊

爆炸压力积聚工况下石松子粉尘爆炸火焰传播特性

喻健良 纪文涛 闫兴清 于小哲 侯玉洁

喻健良, 纪文涛, 闫兴清, 于小哲, 侯玉洁. 爆炸压力积聚工况下石松子粉尘爆炸火焰传播特性[J]. 爆炸与冲击, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436
引用本文: 喻健良, 纪文涛, 闫兴清, 于小哲, 侯玉洁. 爆炸压力积聚工况下石松子粉尘爆炸火焰传播特性[J]. 爆炸与冲击, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436
YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436
Citation: YU Jianliang, JI Wentao, YAN Xingqing, YU Xiaozhe, HOU Yujie. Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions[J]. Explosion And Shock Waves, 2019, 39(2): 025401. doi: 10.11883/bzycj-2017-0436

爆炸压力积聚工况下石松子粉尘爆炸火焰传播特性

doi: 10.11883/bzycj-2017-0436
基金项目: 

国家自然科学基金项目 51574056

国家自然科学基金项目 51604057

详细信息
    作者简介:

    喻健良(1963-), 男, 博士, 教授, 博士生导师, yujianliang@dlut.edu.cn

  • 中图分类号: O381;X392

Flame propagation characteristics of lycopodium dust explosion under explosion pressure accumulation conditions

  • 摘要: 搭建了一套兼具承压和可视性能粉尘爆炸实验平台,在压力积聚工况下实验研究了石松子粉尘爆炸火焰传播特性。实验结果表明:压力积聚工况下的石松子粉尘爆炸火焰呈现空间离散的束状结构,火焰锋面呈齿状。随着粉尘浓度的提升,火焰连续性增强,锋面趋于平滑,亮度增加,并在750 g/m3达到最佳。不同浓度条件下的石松子粉尘爆炸火焰在传播过程中均呈现明显的速度脉动特征,但脉动频率随粉尘浓度的增大而减小。爆炸火焰平均传播速度随粉尘浓度的增大先增大后减小,并在750 g/m3达到最高。不同浓度条件下的石松子粉尘爆炸火焰前期传播速度均高于后期传播速度。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental setup

    图  2  石松子粉尘粒径分布

    Figure  2.  Diameter distribution of lycopodium dust

    图  3  石松子粉尘扫描电镜

    Figure  3.  Scanning electron microscope of lycopodium dust

    图  4  浓度为250 g/m3的石松子粉尘爆炸火焰结构随时间的变化规律

    Figure  4.  Flame structure of lycopodium varying with time at dust concentration of 250 g/m3

    图  5  浓度为500 g/m3的石松子粉尘爆炸火焰结构随时间的变化规律

    Figure  5.  Flame structure of lycopodium varying with time at dust concentration of 500 g/m3

    图  6  750 g/m3浓度下石松子粉尘爆炸火焰结构随时间的变化规律

    Figure  6.  Flame structure of lycopodium varying with time at dust concentration of 750 g/m3

    图  7  1 000 g/m3浓度下石松子粉尘爆炸火焰结构随时间变化规律

    Figure  7.  Flame structure of lycopodium varying with time at dust concentration of 1 000 g/m3

    图  8  不同浓度的石松子粉尘爆炸火焰锋面位置随时间的变化

    Figure  8.  Flame front position of lycopodium dust explosion along with time at different dust concentrations

    图  9  不同浓度的石松子粉尘爆炸火焰传播速度随时间变化

    Figure  9.  Flame speed of lycopodium dust explosion along with time at different dust concentrations

  • [1] ABBASI T, ABBASI S A. Dust explosions:cases, causes, consequences, and control[J]. Journal of Hazardous Materials, 2007, 140(1):7-44. DOI: 10.1016/j.jhazmat.2006.11.007.
    [2] CHEN J L, DOBASHI R, HIRANO T. Mechanisms of flame propagation through combustible particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(3):225-229. DOI: 10.1016/0950-4230(96)00001-0.
    [3] JU W J, DOBASHI R, HIRANO T. Reaction zone structures and propagation mechanisms of flames in stearic acid particle clouds[J]. Journal of Loss Prevention in the Process Industries, 1998, 11(6):423-430.DOI:info:doi/ 10.1016/S0950-4230(98)00027-8.
    [4] HAN O S, YASHIMA M, MATSUDA T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process industries, 2000, 13:449-457. doi: 10.1016/S0950-4230(99)00072-8
    [5] HAN O S, YASHIMA M, MATSUDA T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles' behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):153-160. DOI: 10.1016/S0950-4230(00)00049-8.
    [6] PROUST C. Flame propagation and combustion in some dust-air mixtures[J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1):89-100. DOI: 10.1016/j.jlp.2005.06.026.
    [7] SUN J H, DOBASHI R, HIRANO T. Concentration profile of particles across a flame propagating through iron particle cloud[J]. Combustion and Flame, 2003, 134(4):381-387. doi: 10.1016/S0010-2180(03)00137-8
    [8] CAO W G, GAO W, PENG Y H, et al. Experimental study on the combustion sensitivity parameters and pre-combusted changes in functional groups of lignite coal dust[J]. Powder Technology, 2015, 283:512-518. DOI: 10.1016/j.powtec.2015.06.025.
    [9] GAO W, TOSHIO M, YU J L, et al. Flame propagation mechanisms in dust explosions[J]. Jouranal of Loss Prevention in the Process Industries, 2015, 36:186-194. DOI: 10.1016/j.jlp.2014.12.021.
    [10] GAO W, TOSHIO M, RONG J H, et al. Motion behaviors of the unburned particles ahead of flame front in hexadecanol dust explosion[J]. Powder Technology, 2015, 271:125-133. DOI: 10.1016/j.powtec.2014.11.003.
    [11] AMYOTTE P R, PEGG M J. Lycopodium dust explosions in a Hartmann bomb:effects of turbulence[J]. Journal of Loss Prevention in the Process Industries, 1989, 2(2):87-94. DOI: 10.1016/0950-4230(89)80004-X.
    [12] HAN O S, YASHIMA M, MATSUDA T, et al. Behavior of flames propagating through lycopodium dust clouds in a vertical duct[J]. Journal of Loss Prevention in the Process Industries, 2000, 13(6):449-457. DOI: 10.1016/S0950-4230(99)00072-8.
    [13] HAN O S, YASHIMA M, MATSUDA T, et al. A study of flame propagation mechanisms in lycopodium dust clouds based on dust particles' behavior[J]. Journal of Loss Prevention in the Process Industries, 2001, 14(3):153-160. DOI: 10.1016/S0950-4230(00)00049-8.
    [14] KHALIL Y F. Experimental determination of dust cloud deflagration parameters of selected hydrogen storage materials:complex metal hydrides, chemical hydrides, and adsorbents[J]. Journal of Loss Prevention in the Process Industries, 2013, 26(1):96-103. DOI: 10.1016/j.jlp.2012.09.010.
    [15] SILVESTRINI M, GENOVA B, TRUJILLO F J L. Correlations for flame speed and explosion overpressure of dust clouds inside industrial enclosures[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(4):374-392. DOI: 10.1016/j.jlp.2008.01.004.
    [16] 高伟, 阿部俊太郎, 荣建忠, 等.气流特征对水平长管内石松子粉尘爆炸火焰结构的影响[J].爆炸与冲击, 2015, 35(3):372-379. DOI: 10.11883/1001-1455-(2015)03-0372-08.

    GAO Wei, ABE S, RONG Jianzhong, et al. Effect of airflow characteristics on flame structure for following lycopodium dust-air mixtures in a long horizontal tube[J]. Explosion and Shock Waves, 2015, 35(3):372-379. DOI: 10.11883/1001-1455-(2015)03-0372-08.
    [17] JI W T, YAN X Q, SUN H L, et al. Comparative analysis of the explosibility of several different hybrid mixtures[J]. Powder Technology, 2017, 325:42-48. DOI: 10.1016/j.powtec.2017.11.022.
    [18] 喻健良, 纪文涛, 孙会利, 等.甲烷/石松子粉尘混合体系爆炸下限的变化规律[J].爆炸与冲击, 2017, 37(6):924-930. DOI: 10.11883/1001-1455(2017)06-0924-07.

    YU Jianliang, JI Wentao, SUN Huili, et al. Experimental investigation of the lower explosion limit of hybrid mixtures of methane and lycopodium dust[J]. Explosion and Shock Waves, 2017, 37(6):924-930. DOI: 10.11883/1001-1455(2017)06-0924-07.
  • 加载中
图(9)
计量
  • 文章访问数:  5945
  • HTML全文浏览量:  2214
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-02-06
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回