预点火湍流对正戊烷云雾爆炸参数的影响

刘雪岭 张奇

刘雪岭, 张奇. 预点火湍流对正戊烷云雾爆炸参数的影响[J]. 爆炸与冲击, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458
引用本文: 刘雪岭, 张奇. 预点火湍流对正戊烷云雾爆炸参数的影响[J]. 爆炸与冲击, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458
LIU Xueling, ZHANG Qi. Influence of pre-ignition turbulence intensity on n-pentane mists explosion[J]. Explosion And Shock Waves, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458
Citation: LIU Xueling, ZHANG Qi. Influence of pre-ignition turbulence intensity on n-pentane mists explosion[J]. Explosion And Shock Waves, 2019, 39(3): 032101. doi: 10.11883/bzycj-2017-0458

预点火湍流对正戊烷云雾爆炸参数的影响

doi: 10.11883/bzycj-2017-0458
基金项目: 贵州省科技支撑计划(201805330030620551)
详细信息
    作者简介:

    刘雪岭(1972- ),男,博士研究生,副教授,fanyanmusic@126.com

  • 中图分类号: O389

Influence of pre-ignition turbulence intensity on n-pentane mists explosion

  • 摘要: 以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为 21.21、14.51 和 8.64 μm 的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在 20 L 云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1) 对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2) 对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3) 对比云雾三种SMD,粒径8.64 μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在“转变区域”(transition range)现象;(4) 对于SMD在8~22 μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。
  • 图  1  瞬态浓度与粒径测量系统构成示意图

    Figure  1.  The measurement system on mists concentration and diameter

    图  2  云雾湍流测量系统构成示意图

    Figure  2.  The measurement system of turbulence

    图  3  云雾爆炸参数测量系统示意图

    Figure  3.  Schematic diagram on mists explosion parameters

    图  4  圆柱型罐喷头示意图

    Figure  4.  Schematic diagram of nozzle

    图  5  正戊烷云雾浓度随时间变化趋势

    Figure  5.  The concentrations of n-pentane vs. time

    图  6  正戊烷云雾平均特征直径(D32)随时间变化趋势

    Figure  6.  SMDs (D32) of n-pentane vs. time

    图  7  气动压力为0.4 MPa时湍流强度随时间的变化

    Figure  7.  Turbulence intensity vs. time at pneumatic pressure of 0.4 MPa

    图  8  喷雾压力为0.4 MPa时片光2处罐内湍流分布

    Figure  8.  Turbulence intensity distribution at pneumatic pressure of 0.4 MPa at location 2

    图  9  湍流均方根速度vrms与蒸发速率Vt)的关系

    Figure  9.  Relation between root-mean-square velocities (vrms) and evaporation rate (V(t))

    图  10  湍流均方根速度(vrms)与超压峰值(pmax)的关系

    Figure  10.  Relationship between root-mean-square velocities (vrms) and maximum overpressure (pmax)

    图  11  湍流均方根速度(vrms)与最大超压上升速率(${\dot p_{{\rm{max}}}}$)的关系

    Figure  11.  Relationship between root-mean-square velocities (vrms) and maximum increasing rate of overpressure (${\dot p_{{\rm{max}}}}$)

    图  12  不同粒径正戊烷云雾爆炸超压(vrms)及最大压力上升速率(${\dot p_{{\rm{max}}}}$)对比(vrms=4 m/s)

    Figure  12.  Comparison of root-mean-square velocities (vrms) and maximum increasing rate of overpressures (${\dot p_{{\rm{max}}}}$) at different particle size (vrms=4 m/s)

    图  13  云雾爆炸过程典型的超压历程

    Figure  13.  Aerosols explosion process

    图  14  正戊烷云雾爆炸火焰传播过程

    Figure  14.  Flame propagation process on n-pentane/air aerosols

    图  15  湍流均方根速度(t*)与火焰传播延迟时间(vrms)的关系

    Figure  15.  Flame propagation delay time (t*) vs. root-mean-square velocities (vrms)

    表  1  正戊烷云雾湍流强度及浓度粒径实验统计结果

    Table  1.   Experiment results of turbulence intensity and concentration

    气动压力/
    MPa
    时刻/
    ms
    vrms/
    (m·s−1
    D32/
    μm
    质量浓度/(g·m−3
    总体液相气相
    0.81006.28.64454340137
    1504.0452327148
    2002.5451315158
    2502.0449304167
    0.61005.014.51454320134
    1503.5452307145
    2002.2451296151
    2501.5449285164
    0.41004.021.21454299132
    1503.0452288142
    2002.0451277152
    2501.0449267160
     注:vrms为流场均方根速度
    下载: 导出CSV

    表  2  不同气动喷雾压力下湍流积分尺度及雷诺数

    Table  2.   Average turbulence integral scale and Reynolds numbers at different dispersing air pressures

    时间/ms${\ell _0}$/mm$Re_{{\ell _0}}^{}$
    0.8 MPa0.6 MPa0.4 MPa0.8 MPa0.6 MPa0.4 MPa
    10040454816 30015 60015 000
    15055575812 60012 00011 700
    2006568709 2008 7008 400
    2506769728 6008 5008 000
    下载: 导出CSV
  • [1] 白春华, 梁慧敏, 李建平. 云雾爆轰[M]. 北京: 科学出版社, 2012: 1.

    BAI Chunhua, LIANG Huiming, LI Jianping. Spray detonation[M]. Beijing: Science Press, 2012: 1.
    [2] 姚干兵, 解立峰, 刘家骢. 液体碳氢燃料云雾爆轰特性的实验研究 [J]. 爆炸与冲击, 2006, 26(6): 543–549 doi: 10.3321/j.issn:1001-1455.2006.06.012

    YAO Ganbing, XIE Lifeng, LIU Jiacong. Experimental study on detonation characteristics of liquid fuel-air mixtures [J]. Explosion and Shock Waves, 2006, 26(6): 543–549 doi: 10.3321/j.issn:1001-1455.2006.06.012
    [3] 沈晓波, 鲁长波, 李斌, 等. 液体燃料云雾爆轰参数实验 [J]. 爆炸与冲击, 2012, 32(1): 108–112

    SHEN Xiaobo, LU Changbo, LI Bin, et al. An experimental study of detonation parameters of liquid fuel drops cloud [J]. Explosion and Shock Waves, 2012, 32(1): 108–112
    [4] LIU Q M, BAI C H, D W X, et al. Deflagration-to-detonation transition in isopropyl nitrate mist/air mixtures [J]. Combustion, Explosion, and Shock Waves, 2011, 47(4): 448–456. doi: 10.1134/S0010508211040083
    [5] LIU Q M, BAI C H, JIANG L, et al. Deflagration-to-detonation transition in nitromethane mist/aluminum dust/air mixtures [J]. Combustion and Flame, 2010, 157(1): 106–117. doi: 10.1016/j.combustflame.2009.06.026
    [6] MOEN I. Transition to detonation in fuel-air explosive clouds [J]. Journal of Hazardous Materials, 1993, 33(2): 159–192. doi: 10.1016/0304-3894(93)85052-G
    [7] STAMPS D W, SLEZAK S E, TIESZEN S R. Observations of the cellular structure of fuel-air detonations [J]. Combustion and Flame, 2006, 144(1): 289–298.
    [8] SANTON R C. Mist fires and explosions—an incident survey [C]// IChemE Hazards XXI Symposium & Workshop. Manchester, 2009.
    [9] ZABETAKIS M G. Flammability characteristics of combustible gases and vapors: BULL-627[R]. Washington DC: USBM, 1965.
    [10] BURGOYNE J H, COHEN L. The effect of drop size on flame propagation in liquid aerosols [J]. Proceedings of the Royal Society of London: Series A: Mathematical and Physical Sciences, 1954, 225(1162): 375–392.
    [11] FAETH G M, OLSON D R. The ignition of hydrocarbon fuel droplets in air[R]. SAE, 1968.
    [12] WILLIAMS F A. Mono-disperse spray deflagration [J]. Progress in Astronautics and Rocketry, 1960, 2: 223.
    [13] 王悦, 白春华. 乙醚云雾场燃爆参数实验研究 [J]. 爆炸与冲击, 2016, 36(4): 497–502

    WANG Yue, BAI Chunhua. Experimental research on explosion parameters of diethyl ether mist [J]. Explosion and Shock Waves, 2016, 36(4): 497–502
    [14] 王悦, 白春华, 李斌, 等. 正癸烷云雾气液两相浓度对其燃爆参数的影响 [J]. 含能材料, 2015, 23(7): 663–669

    WANG Yue, BAI Chunhua, LI Bin, et al. Influence of the gas-liquid two-phase concentrations of n-decane sprays on its explosion parameters [J]. Chinese Journal of Energetic Materials, 2015, 23(7): 663–669
    [15] LIU X L, ZHANG Q, WANG Y. Influence of vapor-liquid two-phase n-hexane/air mixtures on flammability limit and minimum ignition energy [J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12856–12865.
    [16] LIU X L, WANG Y, ZHANG Q. A study of the explosion parameters of vapor-liquid two - phase JP-10/air mixtures [J]. Fuel, 2016, 165: 279–288. doi: 10.1016/j.fuel.2015.10.081
    [17] LIU X L, ZHANG Q, WANG Y. Influence of particle size on the explosion parameters in two-phase vapor-liquid n-hexane/air mixtures [J]. Process Safety and Environmental Protection, 2015, 95: 184–194. doi: 10.1016/j.psep.2015.03.006
    [18] LIU X L, ZHANG Q, WANG Y. Influence of vapor-liquid two-phase n-heptane on the explosion parameters in air [J]. Combustion Science and Technology, 2015, 187(12): 1879–1904. doi: 10.1080/00102202.2015.1069282
    [19] SCHEID M, GEIßLER A, KRAUSE U. Experiments on the influence of pre-ignition turbulence on vented gas and dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(2-3): 194–199. doi: 10.1016/j.jlp.2005.04.005
    [20] ANDREWS G E, DRADLEY D, LWAKABAMBA S B. Turbulence and turbulent flame propagation -a critical appraisal [J]. Combustion and Flame, 1975, 24: 285–304. doi: 10.1016/0010-2180(75)90163-7
    [21] BRADLEY D, MITCHESON A. The venting of gaseous explosions in spherical vessels: I-theory [J]. Combustion and flame, 1978, 32: 221–236. doi: 10.1016/0010-2180(78)90098-6
    [22] CHIPPET S. Modeling of vented deflagrations [J]. Combustion and Flame, 1984, 55(2): 127–140. doi: 10.1016/0010-2180(84)90022-1
    [23] LIU X L, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro-and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. doi: 10.1016/j.jhazmat.2015.07.068
    [24] PRTERS N. The turbulent burning velocity for large-scale and small-scale turbulence [J]. Journal of Fluid Mechanics, 1999, 384: 107–132. doi: 10.1017/S0022112098004212
    [25] TENNEKES H. Simple model for the small-scale structure of turbulence [J]. Physics of Fluids, 1968, 11: 669–671. doi: 10.1063/1.1691966
    [26] POLYMEROPOULOS C E. Flame propagation in aerosols of fuel droplets, fuel vapor and air [J]. Combustion Science and Technology, 1984, 40(5/6): 217–232.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  5473
  • HTML全文浏览量:  1853
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-29
  • 修回日期:  2018-03-10
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回