A chamber pressure simulator with an exhaust element
-
摘要: 为了在实验室条件下简洁、高效地获得与实际相符的膛压曲线,进而开展典型结构和材料膛压载荷响应特性研究,提出了压力舱内发射药燃烧同时发射药气体由排气件排出的膛压模拟装置。结合发射药燃烧理论和等熵流动模型,建立了排气式膛压模拟过程的数学模型。基于理想气体假设,利用Fluent软件模拟泄压过程质量流量规律,并与理论结果对比,确定了流量系数。分别根据76和155 mm火炮膛压曲线特点及小型化设计原则,对模拟装置性能参数进行了优化设计。优化结果表明,获得的压力曲线的增压速率和降压速率基本满足要求,峰值压力达到300 MPa,压力大于30 MPa历时10 ms以上。验证实验结果表明:压力曲线有良好的重复性,且与理论结果一致,装置工作可靠性高;以排放发射药气体方式模拟膛压曲线是可行的。Abstract: In order to achieve the time-history curves of chamber pressure conveniently and efficiently at the lab-scale and further to investigate the damage patterns of typical structures and materials during transient high pressure in the chamber, a chamber pressure simulator with an exhaust element to discharge the gas generated due to the propellant combustion in the vessel was developed. A mathematical model which describes the working principle of the simulator was derived according to the propellant combustion theory and the isentropic flow model. The mass flow rate during the depressurization procedure was attained using the software Fluent on the basis of the ideal gas hypothesis, which was compared to theoretical results to determine the discharge coefficient. The performance parameters of the simulator were designed optimally based on the characteristics of time-history curves of chamber pressure for 76 mm and 155 mm guns and the miniaturization design principle. Optimization results show that pressurization and depressurization rates are satisfactory, the peak pressure is about 300 MPa and the duration when the pressure is higher than 30 MPa is longer than 10 ms. Results of verification tests present good repeatability and are coincident with theoretical results, which indicates that the simulator works with high reliability. It is feasible to simulate time-history curves of chamber pressure through exhausting propellant gas directly.
-
表 1 数值模型尺寸和初始条件
Table 1. Dimensions of simulation model and initial conditions
模型 D/mm L/mm D1/mm L1/mm D2/mm L2/mm p/MPa p0/MPa T/℃ T0/℃ 1 50 100 1 10 30 100 30 6 1 500 300 100 20 2 500 1 000 20 10 300 1 000 200 40 400 100 表 2 发射药参数
Table 2. Parameters of propellants
发射药牌号 ρ/(g·cm-3) f/(kJ·kg-1) u1 n 2e1/mm D0/mm d0/mm 4/7 1.55 980 6.6×10-8 m·s-1·Pa-n 0.752 0.53 2.60 0.15 18/1 1.55 950 0.707 mm·s-1·MPa-n 1.056 1.84 - - -
[1] 张培忠.火炮物理模拟理论与实验技术研究[D].南京: 南京理工大学, 2002: 40-45. [2] 邢恩峰, 钱建平, 赵国志.炮弹模拟发射过程的动力学建模与实验[J].弹道学报, 2005, 17(2):13-18. doi: 10.3969/j.issn.1004-499X.2005.02.003XING Enfeng, QIAN Jianping, ZHAO Guozhi. A dynamic model and its experiments on simulating the shoot of ammunition[J]. Journal of Ballistics, 2005, 17(2):13-18. doi: 10.3969/j.issn.1004-499X.2005.02.003 [3] 任树梅, 马文经.膛压模拟装置在底火验收中的应用[J].太原机械学院学报, 1992, 13(2):187-194.REN Shumei, MA Wenjing. Design and application of simulator with known bore pressure in the a acceptance of the bottom top[J]. Journal of North University of China, 1992, 13(2):187-194. [4] 张瑜, 祖静, 张红艳, 等.基于环境因子的火炮模拟测试仪校准装置[J].探测与控制学报, 2012, 34(6):35-39. http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201206008ZHANG Yu, ZU Jing, ZHANG Hongyan, et al. Calibration apparatus for artillery chamber pressure test device based on environmental factors[J]. Journal of Detection and Control, 2012, 34(6):35-39. http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201206008 [5] 金志明.枪炮内弹道学[M].北京:北京理工大学出版社, 2004:11-31;281-288. [6] 张领科, 余永刚, 陆欣, 等.炮膛内底排装置燃烧特性计算分析[J].兵工学报, 2011, 32(5):526-531. http://d.old.wanfangdata.com.cn/Periodical/bgxb201105003ZHANG Lingke, YU Yonggang, LU Xin, et al. Calculation and analysis on the combustion characteristics of a base bleed unit in the gun bore[J]. Acta Armamentarii, 2011, 32(5):526-531. http://d.old.wanfangdata.com.cn/Periodical/bgxb201105003 [7] 杨钢, 徐小威, 高隆隆.高压气体定容积充放气的特性[J].兰州理工大学学报, 2010, 3(3):42-46. doi: 10.3969/j.issn.1673-5196.2010.03.010YANG Gang, XU Xiaowei, GAO Longlong. Characteristics of isovolumetric charging and releasing of high-pressure gas[J]. Journal of Lanzhou University of Technology, 2010, 3(3):42-46. doi: 10.3969/j.issn.1673-5196.2010.03.010 [8] 杨丽红.容器放气过程的数值模拟及热力学模型研究[D].上海: 上海交通大学, 2007: 35-42. [9] 訚耀保, 罗九阳, 陈洁萍, 等.车载高压输氢系统气瓶输氢加氢特性研究[J].机床与液压, 2008, 36(10):33-37. doi: 10.3969/j.issn.1001-3881.2008.10.011YIN Yaobao, LUO Jiuyang, CHEN Jieping, et al. Characteristics of high-pressure hydrogen transportation system and gas cylinder of hydrogen fuel cell vehicle[J]. Machine Tool and Hydraulics, 2008, 36(10):33-37. doi: 10.3969/j.issn.1001-3881.2008.10.011 [10] 张之明, 王家鹏, 张远, 等.底排药受力载荷及其分布规律[J].火炸药学报, 2014, 37(3):78-81. doi: 10.3969/j.issn.1007-7812.2014.03.018ZHANG Zhiming, WANG Jiapeng, ZHANG Yuan, et al. Load and its distribution of the base bleed charge[J]. Chinese Journal of Explosive and Propellants, 2014, 37(3):78-81. doi: 10.3969/j.issn.1007-7812.2014.03.018 [11] 梁磊, 闫光虎, 赵煜华, 等.一种新型固体随行弹药的实验研究[J].火工品, 2016(1):49-52. doi: 10.3969/j.issn.1003-1480.2016.01.013LIANG Lei, YAN Guanghu, ZHAO Yuhua, et al. Experimental research on a new solid traveling charge of 30 mm guns[J]. Initiators and Pyrotechnics, 2016(1):49-52. doi: 10.3969/j.issn.1003-1480.2016.01.013 [12] 汪俊杰, 黄振亚, 何飞, 等.发射药药型结构对燃速测试结果的影响[J].弹道学报, 2014, 26(2):80-85. doi: 10.3969/j.issn.1004-499X.2014.02.017WANG Junjie, HUANG Zhenya, HE Fei, et al. Influence of propellant structure on test results of burning rate[J]. Journal of Ballistics, 2014, 26(2):80-85. doi: 10.3969/j.issn.1004-499X.2014.02.017