Experimental study on quasi-one-dimensional strain compression of calcareous sand
-
摘要: 利用
$\varnothing ∅ $ 100 mm的Hopkinson压杆研究了不同预压力条件下,受侧限约束的钙质砂在500~800 s−1应变率范围、0~200 MPa压力范围内的动态力学特性,并利用HUT106D万能材料试验机研究了相同条件钙质砂在2×10−3 s−1应变率、0~120 MPa压力范围内的静态力学特性。研究发现,当再次加载超过一定值后,预压力对钙质砂力学特性的影响不大;Tait物态方程可以描述钙质砂的静态容变关系及高压下的动态容变关系;钙质砂的体积压缩过程存在应变率效应。-
关键词:
- 钙质砂 /
- Hopkinson压杆 /
- 预压 /
- 物态方程 /
- 应变率效应
Abstract: The 100 mm split Hopkinson pressure bar was used to study the dynamic mechanical properties of the calcareous sand confined by confinement at strain rates ranging from 500 to 800 s−1 and pressures ranging from 0 to 200 MPa under different pre-pressures. The static mechanical properties of calcareous sand under the same conditions were investigated in the strain rate of 2×10−3 s−1 and the pressure range of 0−120 MPa by using HUT106D universal material testing machine. It is found that the pre-pressure value has little effect on the mechanical properties of calcareous sand when the load is more than a certain value; Tait equation of state can describe the relationship between hydrostatic pressure and volume strain of calcareous sand in static state and the dynamic state under high pressure; the volumetric compression process of calcareous sand shows a strain rate effect.-
Key words:
- calcareous sand /
- split Hopkinson pressure bar /
- pre-pressure /
- equation of state /
- strain rate effect
-
表 1 SHPB试验工况表
Table 1. SHPB test table
工况 质量/g 初始长度/mm 预压力/MPa 压后长度/mm 压后密度/(g·cm−3) 子弹速度/(m·s−1) 应变率/s−1 1 125 12.6 0 12.6 1.263 7.1 778 2 125 12.6 0 12.6 1.263 7.13 797 3 250 25.2 20 19.7 1.616 15.61 513 4 250 25.2 20 19.7 1.616 15.59 506 5 250 25.2 10 21.3 1.494 15.71 569 6 250 25.2 10 21.3 1.494 15.68 551 7 250 25.2 20 19.4 1.641 21.55 647 8 250 25.2 20 19.4 1.641 21.52 626 9 250 25.2 30 18.4 1.73 21.41 590 10 250 25.2 30 18.4 1.73 21.38 561 -
[1] 刘崇权, 单华刚, 汪稔. 钙质土工程特性及其桩基工程 [J]. 岩石力学与工程学报, 1999(3): 331–335 doi: 10.3321/j.issn:1000-915.1999.03.021LIU Chongquan, SHAN Huagang, WANG Ren. The geotechnical characters of calcareous soils and the pile foundation engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 1999(3): 331–335 doi: 10.3321/j.issn:1000-915.1999.03.021 [2] 单华刚, 汪稔. 钙质砂中的桩基工程研究进展述评 [J]. 岩土力学, 2000, 21(3): 299–308 doi: 10.3969/j.issn.1000-7598.2000.03.027SHAN Huagang, WANG Ren. Development of study on pile in calcareous sand [J]. Rock and Soil Mechanics, 2000, 21(3): 299–308 doi: 10.3969/j.issn.1000-7598.2000.03.027 [3] COOP M R. The mechanics of uncommented carbonate sands [J]. Géotechnique, 1990, 40(40): 607–626. doi: 10.1680/geot.1990.40.4.607 [4] AIREY D W. Triaxial testing of naturally cemented carbonate soil [J]. Journal of Geotechnical Engineering, 1993, 119(9): 1379–1398. doi: 10.1061/(ASCE)0733-9410(1993)119:9(1379) [5] 刘崇权, 杨志强, 汪稔. 钙质土力学性质研究现状与进展 [J]. 岩土力学, 1995, 16(4): 74–84 doi: 10.16285/j.rsm.1995.04.010LIU Chongquan, SHAN Huagang, WANG Ren. The present condition and development in studies of mechanical properties of calcareous [J]. Rock and Soil Mechanics, 1995, 16(4): 74–84 doi: 10.16285/j.rsm.1995.04.010 [6] 张家铭, 汪稔, 张阳明, 等. 土体颗粒破碎研究进展 [J]. 岩土力学, 2003(s2): 661–665 doi: 10.16285/j.rsm.2003.s2.158ZHANG Jiaming, WANG Ren, ZHANG Yangming, et al. Advance in studies of soil grain crush [J]. Rock and Soil Mechanics, 2003(s2): 661–665 doi: 10.16285/j.rsm.2003.s2.158 [7] 张家铭, 邵晓泉, 王霄龙, 等. 沉桩过程中钙质砂颗粒破碎特性模拟研究 [J]. 岩土力学, 2015, 36(1): 272–278 doi: 10.16285/j.rsm.2015.01.037ZHANG Jiaming, SHAO Xiaoquan, WANG Xiaolong, et al. Discrete element simulation of crushing behavior of calcareous sands during pile jacking [J]. Rock and Soil Mechanics, 2015, 36(1): 272–278 doi: 10.16285/j.rsm.2015.01.037 [8] KAGGWA W S, BOOKER J R, CARTER J P. Residual strains in calcareous sand due to irregular cyclic loading [J]. Journal of Geotechnical Engineering, 1991, 117(2): 201–218. doi: 10.1061/(ASCE)0733-9410(1991)117:2(201) [9] KNODEL P C, AL-DOURI R H, POULOS H G. Static and cyclic direct shear tests on carbonate sands [J]. Geotechnical Testing Journal, 1992, 15(2). doi: 10.1520/GTJ10236J [10] 虞海珍, 汪稔, 赵文光, 等. 波浪荷载下钙质砂孔压增长特性的试验研究 [J]. 武汉理工大学学报, 2006, 28(11): 86–89 doi: 10.3321/j.issn:1671-4431.2006.11.026YU Haizhen, WANG Ren, ZHAO Wenguang, et al. Experimental research on development pattern of pore water pressure of carbonate sand under wave loads [J]. Journal of Wuhan University of Technology, 2006, 28(11): 86–89 doi: 10.3321/j.issn:1671-4431.2006.11.026 [11] 虞海珍. 复杂应力条件下饱和钙质砂动力特性的试验研究[D]. 武汉: 华中科技大学, 2006. DOI: 10.7666/d.d048504. [12] 刘汉龙, 胡鼎, 肖杨, 等. 钙质砂动力液化特性的试验研究 [J]. 防灾减灾工程学报, 2015(6): 707–711 doi: 10.13409/j.cnki.jdpme.2015.06.001LIU Hanlong, HU Ding, XIAO Yang, et al. Test study on dynamic liquefaction characteristics of calcareous sand [J]. Journal of Disaster Prevention and Mitigation Engineering, 2015(6): 707–711 doi: 10.13409/j.cnki.jdpme.2015.06.001 [13] 徐学勇, 汪稔, 王新志, 等. 饱和钙质砂爆炸响应动力特性试验研究 [J]. 岩土力学, 2012, 33(10): 402–414 doi: 10.16285/j.rsm.2012.10.005XU Xueyong, WANG Ren, WANG Xinzhi, et al. Experimental study of dynamic behavior of saturated calcareous sand due to explosion [J]. Rock and Soil Mechanics, 2012, 33(10): 402–414 doi: 10.16285/j.rsm.2012.10.005 [14] SONG B, CHEN W, LUK V. Impact compressive response of dry sand [J]. Mechanics of Materials, 2009, 41(6): 777–785. doi: 10.1016/j.mechmat.2009.01.003 [15] BRAGOV A M, LOMUNOV A K, SERGEICHEV I V, et al. Determination of physic mechanical properties of soft soils from medium to high strain rates [J]. International Journal of Impact Engineering, 2008, 35(9): 967–976. doi: 10.1016/j.ijimpeng.2007.07.004 [16] 郑文, 徐松林, 胡时胜. 侧限压缩下干燥砂的动态力学性能 [J]. 爆炸与冲击, 2011, 31(6): 619–623 doi: 10.11883/1001-1455(2011)06-0619-05ZHENG Wen, XU Songlin, HU Shisheng. Dynamic mechanical properties of dry sand under confined compression [J]. Explosion and Shock Waves, 2011, 31(6): 619–623 doi: 10.11883/1001-1455(2011)06-0619-05 [17] 李英雷, 叶想平, 张祖根, 等. 一种适用于低体模量材料的被动围压SHPB实验设计 [J]. 爆炸与冲击, 2014, 34(6): 667–672 doi: 10.11883/1001-1455(2014)06-0667-06LI Yinglei, YE Xiangping, ZHANG Zugen, et al. A design of passive confined SHPB experiment for materials with low bulk modulus [J]. Explosion and Shock Waves, 2014, 34(6): 667–672 doi: 10.11883/1001-1455(2014)06-0667-06 [18] RAVI-CHANDAR K, MA Z. Inelastic Deformation in Polymers under Multi axial Compression [J]. Mechanics of Time-Dependent Materials, 2000, 4(4): 333–357. doi: 10.1023/A:1026570826226 [19] LUO H, LU H, COOPER W L, et al. Effect of mass density on the compressive behavior of dry sand under confinement at high strain rates [J]. Experimental Mechanics, 2011, 51(9): 1499–1510. doi: 10.1007/s11340-011-9475-2 [20] FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. doi: 10.1016/j.ijimpeng.2007.04.007 [21] JACKSON J J G. Uniaxial Strain Testing of Soils for Blast-Oriented Problems [J]. 1968. [22] BRAGOV A M, GRUSHEVSKY G M, LOMUNOV A K. Use of the Kolsky Method for Studying Shear Resistance of Soils [J]. 1994, 1: 253−259. [23] LYAKHOV G M, LUCHKO I A, PLAKSII V A, et al. Spherical detonation waves in a solid multi component viscoplastic medium [J]. Soviet Applied Mechanics, 1986, 22(5): 490–495. doi: 10.1007/BF00888551 [24] VOVK A A, LUCHKO I A, LYAKHOV G M, et al. Cylindrical blast waves in soils [J]. Journal of Applied Mechanics & Technical Physics, 1986, 27(4): 571–576. doi: 10.1007/BF00910203 [25] HENRYCH J, ABRAHAMSON G R. The dynamics of explosion and its use [M]. New York: Elsevier Scientific Publishing Company, 1979: 73−74. [26] KRYMSKII A V, LYAKHOV G M. Waves from an underground explosion [J]. Journal of Applied Mechanics & Technical Physics, 1984, 25(3): 361–367. doi: 10.1007/BF00910394 [27] 王礼立, 胡时胜, 杨黎明, 等.材料动力学[M]. 合肥: 中国科学技术大学出版社, 2017: 95−120.