小比距离密闭空腔爆炸爆后气体温度和压力测量技术研究

张继军 张东亮 赵建伟 张宝国 崔云霄

张继军, 张东亮, 赵建伟, 张宝国, 崔云霄. 小比距离密闭空腔爆炸爆后气体温度和压力测量技术研究[J]. 爆炸与冲击, 2019, 39(2): 024103. doi: 10.11883/bzycj-2018-0039
引用本文: 张继军, 张东亮, 赵建伟, 张宝国, 崔云霄. 小比距离密闭空腔爆炸爆后气体温度和压力测量技术研究[J]. 爆炸与冲击, 2019, 39(2): 024103. doi: 10.11883/bzycj-2018-0039
ZHANG Jijun, ZHANG Dongliang, ZHAO Jianwei, ZHANG Baoguo, CUI Yunxiao. Study on measurement of gas temperature and pressure after explosion in closed cavity at small-scaled distance[J]. Explosion And Shock Waves, 2019, 39(2): 024103. doi: 10.11883/bzycj-2018-0039
Citation: ZHANG Jijun, ZHANG Dongliang, ZHAO Jianwei, ZHANG Baoguo, CUI Yunxiao. Study on measurement of gas temperature and pressure after explosion in closed cavity at small-scaled distance[J]. Explosion And Shock Waves, 2019, 39(2): 024103. doi: 10.11883/bzycj-2018-0039

小比距离密闭空腔爆炸爆后气体温度和压力测量技术研究

doi: 10.11883/bzycj-2018-0039
详细信息
    作者简介:

    张继军(1988-), 男, 硕士, 工程师, zhangjijun1988@126.com

  • 中图分类号: O384

Study on measurement of gas temperature and pressure after explosion in closed cavity at small-scaled distance

  • 摘要: 为实现空腔爆炸温度、压力变化趋势的准确测量,基于铠装K型热电偶和压力变送器,建立密闭空腔爆后气体温度、压力测量系统。设计密封隔热防护装置,将传感器的敏感端与信号调理模块分别安装在两个密封腔内,有效提高了传感器在大当量爆炸冲击条件下的存活率。在0.86 m/kg1/3比距离密闭空腔大当量爆炸条件下,对传感器及防护装置的性能进行考核验证,爆后测量采集到了有效的气体温度及压力变化历程,且传感器状态能够最终恢复至正常状态。测试结果表明,使用密封隔热安装的K型热电偶和压力变送器可以满足小比距离密闭空腔爆后气体静态温度、压力测量需求。
  • 图  1  测量系统基本结构

    Figure  1.  Basic structural of measurement system

    图  2  双通道信号隔离安全栅基本结构

    Figure  2.  Basic structural of guard grating

    图  3  传感器安装防护装置基本结构

    Figure  3.  Basic structural of protective device

    图  4  锥形导气装置基本结构

    Figure  4.  Basic structural of gas-conducting device

    图  5  不同时刻装置von mises应力分布图

    Figure  5.  Von Mises tress distribution at different time

    图  6  装置的位移与应变分布情况

    Figure  6.  Distribution of displacement and strain

    图  7  爆后温度变化历程监测结果

    Figure  7.  Temperature changing progress

    图  8  爆后压力变化历程监测结果

    Figure  8.  Pressure changing progress after explosive

    表  1  材料参数

    Table  1.   Mechanical parameters of relevant materials

    材料 E/GPa EP/GPa ν σy/MPa ρ/(g·cm-3)
    Q345钢 210 10 0.28 345 7.85
    下载: 导出CSV
  • [1] 李媛媛, 南海.半密闭条件下爆炸场的温度与压力测量[J].火炸药学报, 2008, 31(1):48-52. doi: 10.3969/j.issn.1007-7812.2008.01.013

    LI Yuanyuan, NAN Hai. Detonation field temperature and pressure test under semi-enclosed conditions[J]. Chinese Journal of Explosives & Propellants, 2008, 31(1):48-52. doi: 10.3969/j.issn.1007-7812.2008.01.013
    [2] 王长利, 王惠, 刘晓新, 等.小比距离爆炸的瞬时温度测量[J].爆炸与冲击, 2013(S1):72-77. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ2013S1013.htm

    WANG Changli, WANG Hui, LIU Xiaoxin, et al. Measurements of transient temperatures for explosions at small-scaled distances[J]. Explosion and Shock Waves, 2013(S1):72-77. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ2013S1013.htm
    [3] 李芝绒, 王胜强, 苟兵旺, 等.密闭空间爆炸温度测试方法研究[J].火工品, 2012(5):52-56. doi: 10.3969/j.issn.1003-1480.2012.05.015

    LI Zhirong, WANG Shengqiang, GOU Bingwang. Study on temperature measurement in closed explosion space[J]. Initiators & Pyrotechnics, 2012(5):52-56. doi: 10.3969/j.issn.1003-1480.2012.05.015
    [4] 李芝绒, 翟红波, 闫潇敏, 等.一种温压内爆炸准静态压力测量方法研究[J].传感技术学报, 2016, 29(2):208-212. doi: 10.3969/j.issn.1004-1699.2016.02.010

    LI Zhirong, ZHAI Hongbo, YAN Xiaomin, et al. Study on temperature measurement in closed explosion space[J]. Chinese Journal of Sensor and Actuators, 2016, 29(2):208-212. doi: 10.3969/j.issn.1004-1699.2016.02.010
    [5] 马红, 徐继东, 朱长春, 等.密封容器内爆炸实验瞬态温度测试技术[J].太赫兹科学与电子信息学报, 2014, 12(5):750-756. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201405025

    MA Hong, XU Jidong, ZHU Changchun. Transient temperature testing technology of explosion experiment in airtight container[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(5):750-756. http://d.old.wanfangdata.com.cn/Periodical/xxydzgc201405025
    [6] 王代华, 宋林丽, 张志杰.基于钨铼热电偶的接触式爆炸温度测试方法[J].探测与控制学报, 2012, 34(3):23-28. doi: 10.3969/j.issn.1008-1194.2012.03.005

    WANG Daihua, SONG Linli, ZHANG Zhijie. Transient temperature testing technology of explosion experiment in airtight container[J]. Journal of Detection & Control, 2012, 34(3):23-28. doi: 10.3969/j.issn.1008-1194.2012.03.005
    [7] 王等旺, 张德志, 李焰, 等.爆炸容器内准静态气压实验研究[J].兵工学报, 2012, 33(12):1493-1497. http://d.old.wanfangdata.com.cn/Periodical/bgxb201212014

    WANG Dengwang, ZHANG Dezhi, LI Yan, et al. Experiment investigation on quasi-static pressure in explosion containment vessels[J]. Acta Armamentarii, 2012, 33(12):1493-1497. http://d.old.wanfangdata.com.cn/Periodical/bgxb201212014
    [8] 黄亚峰, 田轩, 冯博, 等.温压炸药爆炸性能实验研究[J].爆炸与与冲击, 2016, 36(4):573-576. http://d.old.wanfangdata.com.cn/Periodical/bzycj201604020

    HUANG Yafeng, TIAN Xuan, FENG Bo, et al. Experiment study on explosion performance of thermobaric explosive[J]. Explosion and Shock Waves, 2016, 36(4):573-576. http://d.old.wanfangdata.com.cn/Periodical/bzycj201604020
    [9] 王铁良, 曹渊, 张建鑫.地下爆炸空腔压力和温度历程数值模拟[J].计算物理, 2011, 28(5):713-718. doi: 10.3969/j.issn.1001-246X.2011.05.011

    WANG Tieliang, CAO Yuan, ZHANG Jianxin. Numerical simulation of cavity pressure and temperature in underground detonation[J]. Chinese Journal of Computational Physics, 2011, 28(5):713-718. doi: 10.3969/j.issn.1001-246X.2011.05.011
    [10] 杨军, 熊琛, 钟方平, 等.爆炸容器力学测试中的抗干扰措施研究[J].兵工学报, 2010, 31(增刊1):271-274. http://d.old.wanfangdata.com.cn/Conference/7151815

    YANG Jun, XIONG Chen, ZHONG Fangping, et al. Research on anti-disturbance methods used in mechanical test for explosion containment vessels[J]. Acta Armamentarii, 2010, 31(suppl 1):271-274. http://d.old.wanfangdata.com.cn/Conference/7151815
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  6247
  • HTML全文浏览量:  2301
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-29
  • 修回日期:  2018-05-07
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回