考虑跃迁的指数型炸药空爆荷载等效静载动力系数

耿少波 李洪 葛培杰

耿少波, 李洪, 葛培杰. 考虑跃迁的指数型炸药空爆荷载等效静载动力系数[J]. 爆炸与冲击, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048
引用本文: 耿少波, 李洪, 葛培杰. 考虑跃迁的指数型炸药空爆荷载等效静载动力系数[J]. 爆炸与冲击, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048
GENG Shaobo, LI Hong, GE Peijie. Equivalent static load dynamical coefficient for exponential air blast loading with transition[J]. Explosion And Shock Waves, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048
Citation: GENG Shaobo, LI Hong, GE Peijie. Equivalent static load dynamical coefficient for exponential air blast loading with transition[J]. Explosion And Shock Waves, 2019, 39(3): 032201. doi: 10.11883/bzycj-2018-0048

考虑跃迁的指数型炸药空爆荷载等效静载动力系数

doi: 10.11883/bzycj-2018-0048
基金项目: 国家自然科学基金(51408558);桥梁结构安全技术国家工程实验室开放基金(2014G1502002)
详细信息
    作者简介:

    耿少波(1982- ),男,博士,讲师,gengshaobo@nuc.edu.cn

  • 中图分类号: O383

Equivalent static load dynamical coefficient for exponential air blast loading with transition

  • 摘要: 为对比抗爆设计规范采用的线性荷载计算模式,建立了考虑跃迁的指数型衰减荷载表达式,通过爆炸荷载等效单自由度微分方程,求解了关于跃迁时长、超压峰值、指数型形状调整参数、结构自振频率与荷载作用时长的等效静载抗力动力系数表达式。根据跃迁时长与形状调整参数,分析了四种典型计算工况,结果表明:现行结构抗爆设计规范等冲量线性衰减荷载可设计范围明显偏小,动力系数在延性比β<3.0下偏保守,而β≥3.0,wt+>1.4δ时偏不安全,最大偏低17.4%;跃迁时长比值越大,动力系数越大,跃迁时长比为1%~2%时,对动力系数影响程度为0.4~0.7%,指数型荷载形状调整参数对柔度特别大的结构动力系数无影响,对其它结构动力系数增大或减少影响程度不一。
  • 图  1  荷载简化及作用时长

    Figure  1.  Schematic diagram of load types and load durations

    图  2  线性衰减荷载与本文荷载计算模式动力系数对比

    Figure  2.  Dynamical coefficients comparison between linear load and exponential loading with transition

    图  3  线性衰减荷载与典型工况结果差异性比值

    Figure  3.  The difference ratio between linear decay load and typical calculation conditions

    表  1  工况分组

    Table  1.   Calculation cases

    工况t0/t+δaθI
    工况10.011.4641.270.2~2.8
    工况20.011.6 1.610.2~2.8
    工况30.021.4641.270.2~2.8
    工况40.021.6 1.610.2~2.8
    下载: 导出CSV

    表  2  工况1动力系数计算Kh

    Table  2.   Dynamical coefficient Kh for calculation case 1

    θ+Kh
    β=1.0β=1.2β=1.6β=2β=3β=5
    0.292 80.100 (1.0%)0.085 (1.2%)0.067 (0.0%)0.057 (0.0%)0.044 (0.0%)0.033 (0.0%)
    0.585 60.199 (0.0%)0.168 (0.0%)0.134 (0.7%)0.114 (0.0%)0.088 (0.0%)0.065 (0.3%)
    0.878 40.296 (−0.3%)0.25 (0.0%)0.199 (0.0%)0.17 (0.0%)0.129 (−2.4%)0.090 (−7.3%)
    1.171 20.389 (−0.8%)0.328 (−0.9%)0.261 (−0.9%)0.220 (−2.3%)0.162 (−6.6%)0.110 (−9.2%)
    1.464 00.478 (−1.7%)0.403 (−1.7%)0.316 (−3.1%)0.265 (−5.1%)0.192 (−7.0%)0.125 (−8.3%)
    1.756 80.562 (−2.5%)0.472 (−2.9%)0.368 (−4.7%)0.307 (−5.1%)0.221 (−5.1%)0.138 (−4.4%)
    2.049 60.640 (−3.4%)0.537 (−3.8%)0.420 (−4.1%)0.350 (−3.4%)0.251 (−1.4%)0.149 (3.2%)
    2.342 40.711 (−4.6%)0.599 (−4.7%)0.474 (−2.0%)0.397 (−0.4%)0.283 (3.0%)0.161
    2.635 20.774 (−6.1%)0.652 (−5.6%)0.519 (−1.9%)0.446 (2.9%)0.319 (7.9%)0.176
    2.928 00.830 (−7.6%)0.700 (−6.7%)0.557 (−2.9%)0.476 (1.6%)0.359 (12.8%)0.198
    3.220 80.877 (−9.4%)0.740 (−8.5%)0.589 (−5.1%)0.504 (−0.6%)0.404 (17.4%)0.229
    3.513 60.9170.7730.6150.5260.4070.267
    3.806 40.9480.7990.6360.5440.4210.308
    4.099 20.9720.8190.6520.5580.4310.354
    下载: 导出CSV
  • [1] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB50009-2012 [S]. 北京: 中国建筑工业出版社, 2012.
    [2] 中华人民共和国建设部. 人民防空地下室设计规范: GB50038-2005 [S]. 北京: 中国计划出版社, 2005.
    [3] 中华人民共和国住房和城乡建设部. 石油化工控制室抗爆设计规范: GB50009-2012 [S]. 北京: 中国计划出版社, 2012.
    [4] 中华人民共和国住房和城乡建设部. 抗爆间室结构设计规范: GB50907-2013 [S]. 北京: 中国计划出版社, 2013.
    [5] 北京市规划委员会. 平战结合人民防空工程设计规范: DB11/994-2013 [S]. 北京: 中国建筑工业出版社, 2013.
    [6] U.S. ARMY CORPS OF ENGINEERS. Structures to Resist the Effects of Accidental Explosions : TM5-1300 [S]. USA: US Army, 1990.
    [7] American Society of Civil Engineering. Design of Blast Resistant Buildings in Petrochemical Facilities: ASCE-41088 [S]. USA: ASCE, 2010.
    [8] BIGGS J M. Introduction to structural dynamics[M]. New York: McGraw-Hill, 1964.
    [9] 伍俊, 刘晶波, 杜义欣. 汽车炸弹爆炸下装配式防爆墙弹塑性动力计算与数值分析 [J]. 防灾减灾工程学报, 2007, 27(4): 394–400 doi: 10.3969/j.issn.1672-2132.2007.04.004

    WU Jun, LIU Jingbo, DU Yixin. Elastic-plastic dynamic calculation and numerical analysis of assembling blast resistant wall under effect of vehicle bombs [J]. Journal of Disaster Prevention & Mitigation Engineering, 2007, 27(4): 394–400 doi: 10.3969/j.issn.1672-2132.2007.04.004
    [10] 颜海春, 方秦, 张亚栋, 等. 化爆作用下人防工程口部封堵梁的计算与分析 [J]. 解放军理工大学学报: 自然科学版, 2001, 2(3): 78–81 doi: 10.3969/j.issn.1009-3443.2001.03.018

    YAN Haichun, FANG Qin, ZHANG Yadong, et al. Calculation and analysis of beam for blocking entrance in civil air-defense engineering under conventional weapon explosion [J]. Journal of PLA University of Science & Technology, 2001, 2(3): 78–81 doi: 10.3969/j.issn.1009-3443.2001.03.018
    [11] 杨涛春, 李国强, 王开强. 接触爆炸荷载下钢—混凝土组合梁简化设计方法研究 [J]. 四川建筑科学研究, 2009, 35(6): 1–4 doi: 10.3969/j.issn.1008-1933.2009.06.001

    YANG Taochun, LI Guoqiang, WANG Kaiqiang. Research on the simplified design method for steel-concrete composite beam subjected to contact blast loading [J]. Sichuan Building Science, 2009, 35(6): 1–4 doi: 10.3969/j.issn.1008-1933.2009.06.001
    [12] BAKER W E. Explosion hazards and evaluation[M]. Amsterdam: Elsevier Scientific Pub. Co. 1983.
    [13] 杨科之, 王年桥. 化爆条件下地面结构等效静载计算方法 [J]. 防护工程, 2001, 23(2): 1–7

    YANG Kezhi, WANG Nianqiao. Equivalent static load calculation method for ground structures under chemical explosion [J]. Protective Engineering, 2001, 23(2): 1–7
    [14] 杨科之, 杨秀敏, 王年桥. 内爆荷载作用下结构等效静载计算方法 [J]. 解放军理工大学学报: 自然科学版, 2002, 3(4): 31–33 doi: 10.3969/j.issn.1009-3443.2002.04.008

    YANG Kezhi, YANG Xiumin, WANG Nianqiao. Equivalent Static Load Calculation Method of Structure Subjected to Internal Explosion [J]. Journal of PLA University of Science & Technology, 2002, 3(4): 31–33 doi: 10.3969/j.issn.1009-3443.2002.04.008
    [15] 陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压-冲量曲线简化计算研究 [J]. 振动与冲击, 2016, 35(13): 224–232 doi: 10.13465/j.cnki.jvs.2016.13.036

    CHEN Junjie, GAO Kanghua, SUN Ao. Simplified calculation method for pressure-impulse curve under blast load [J]. Journal of Vibration and Shock, 2016, 35(13): 224–232 doi: 10.13465/j.cnki.jvs.2016.13.036
    [16] CHEN H L, JIN F N, FAN H L. Elastic responses of underground circular arches considering dynamic soil-structure interaction: A theoretical analysis [J]. Acta Mechanica Sinica, 2013, 29(1): 110–122. doi: 10.1007/s10409-013-0012-7
    [17] SHI Y, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. doi: 10.1016/j.ijimpeng.2007.09.001
    [18] GANTES C J, PNEVMATIKOS N G. Elastic–plastic response spectra for exponential blast loading [J]. International Journal of Impact Engineering, 2004, 30(3): 323–343. doi: 10.1016/S0734-743X(03)00077-0
    [19] LOUCA L A, PUNJANI M, HARDING J E. Non-linear analysis of blast walls and stiffened panels subjected to hydrocarbon explosions [J]. Journal of Constructional Steel Research, 1996, 37(2): 93–113. doi: 10.1016/0143-974X(95)00026-R
    [20] 刘亚玲, 耿少波, 刘玉存, 等. 钢箱梁抗爆试验中冲击波超压测试方法研究 [J]. 中北大学学报学报: 自然科学版, 2018, 39(5): 609–614, 620 doi: 10.3969/j.issn.1673-3193.2018.05.021

    LIU Yaling, GENG Shaobo, LIU Yucun, et al. Research on Shock Wave Overpressure Measurement Method in the Anti-Explosion Test of Steel Box Girder [J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 609–614, 620 doi: 10.3969/j.issn.1673-3193.2018.05.021
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  5493
  • HTML全文浏览量:  1821
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-02
  • 修回日期:  2018-05-12
  • 网络出版日期:  2019-03-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回