Equivalent static load dynamical coefficient for exponential air blast loading with transition
-
摘要: 为对比抗爆设计规范采用的线性荷载计算模式,建立了考虑跃迁的指数型衰减荷载表达式,通过爆炸荷载等效单自由度微分方程,求解了关于跃迁时长、超压峰值、指数型形状调整参数、结构自振频率与荷载作用时长的等效静载抗力动力系数表达式。根据跃迁时长与形状调整参数,分析了四种典型计算工况,结果表明:现行结构抗爆设计规范等冲量线性衰减荷载可设计范围明显偏小,动力系数在延性比β<3.0下偏保守,而β≥3.0,wt+>1.4δ时偏不安全,最大偏低17.4%;跃迁时长比值越大,动力系数越大,跃迁时长比为1%~2%时,对动力系数影响程度为0.4~0.7%,指数型荷载形状调整参数对柔度特别大的结构动力系数无影响,对其它结构动力系数增大或减少影响程度不一。Abstract: Compared to linear attenuation load calculation model, exponential attenuation load with transition expression was given to build equivalent SDOF differential equations under air blast loading. The expressions, which had relationship to transition duration, overpressure peak, exponential load adjusting parameter, natural frequency and overpressure duration, were derived to solve equivalent static load dynamical coefficients. Changed with transition duration and load adjusting parameters, four typical calculation conditions results were calculated. The results show that the linear attenuation blast load’s application range is limited. When the ductility ratio β<3.0, the dynamical coefficients from the linear attenuation blast load behaves greater value and safer characteristic. When the ductility ratio β≥3.0 and wt+>1.4δ, it will be lower 17.4% than the value from exponential attenuation load with transition. For the much transition duration ratio, dynamical coefficients will be greater. In the range of 1%−2% for the transition duration ratio, the effect on dynamical coefficients is greater at 0.4−0.7% and can be ignored. Exponential load adjusting parameter has no effect on structural design with great flexibility while it would lead to increase or decrease the dynamical coefficients for the structure with the general flexibility.
-
表 1 工况分组
Table 1. Calculation cases
工况 t0/t+ δ a θI 工况1 0.01 1.464 1.27 0.2~2.8 工况2 0.01 1.6 1.61 0.2~2.8 工况3 0.02 1.464 1.27 0.2~2.8 工况4 0.02 1.6 1.61 0.2~2.8 表 2 工况1动力系数计算Kh
Table 2. Dynamical coefficient Kh for calculation case 1
θ+ Kh β=1.0 β=1.2 β=1.6 β=2 β=3 β=5 0.292 8 0.100 (1.0%) 0.085 (1.2%) 0.067 (0.0%) 0.057 (0.0%) 0.044 (0.0%) 0.033 (0.0%) 0.585 6 0.199 (0.0%) 0.168 (0.0%) 0.134 (0.7%) 0.114 (0.0%) 0.088 (0.0%) 0.065 (0.3%) 0.878 4 0.296 (−0.3%) 0.25 (0.0%) 0.199 (0.0%) 0.17 (0.0%) 0.129 (−2.4%) 0.090 (−7.3%) 1.171 2 0.389 (−0.8%) 0.328 (−0.9%) 0.261 (−0.9%) 0.220 (−2.3%) 0.162 (−6.6%) 0.110 (−9.2%) 1.464 0 0.478 (−1.7%) 0.403 (−1.7%) 0.316 (−3.1%) 0.265 (−5.1%) 0.192 (−7.0%) 0.125 (−8.3%) 1.756 8 0.562 (−2.5%) 0.472 (−2.9%) 0.368 (−4.7%) 0.307 (−5.1%) 0.221 (−5.1%) 0.138 (−4.4%) 2.049 6 0.640 (−3.4%) 0.537 (−3.8%) 0.420 (−4.1%) 0.350 (−3.4%) 0.251 (−1.4%) 0.149 (3.2%) 2.342 4 0.711 (−4.6%) 0.599 (−4.7%) 0.474 (−2.0%) 0.397 (−0.4%) 0.283 (3.0%) 0.161 2.635 2 0.774 (−6.1%) 0.652 (−5.6%) 0.519 (−1.9%) 0.446 (2.9%) 0.319 (7.9%) 0.176 2.928 0 0.830 (−7.6%) 0.700 (−6.7%) 0.557 (−2.9%) 0.476 (1.6%) 0.359 (12.8%) 0.198 3.220 8 0.877 (−9.4%) 0.740 (−8.5%) 0.589 (−5.1%) 0.504 (−0.6%) 0.404 (17.4%) 0.229 3.513 6 0.917 0.773 0.615 0.526 0.407 0.267 3.806 4 0.948 0.799 0.636 0.544 0.421 0.308 4.099 2 0.972 0.819 0.652 0.558 0.431 0.354 -
[1] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB50009-2012 [S]. 北京: 中国建筑工业出版社, 2012. [2] 中华人民共和国建设部. 人民防空地下室设计规范: GB50038-2005 [S]. 北京: 中国计划出版社, 2005. [3] 中华人民共和国住房和城乡建设部. 石油化工控制室抗爆设计规范: GB50009-2012 [S]. 北京: 中国计划出版社, 2012. [4] 中华人民共和国住房和城乡建设部. 抗爆间室结构设计规范: GB50907-2013 [S]. 北京: 中国计划出版社, 2013. [5] 北京市规划委员会. 平战结合人民防空工程设计规范: DB11/994-2013 [S]. 北京: 中国建筑工业出版社, 2013. [6] U.S. ARMY CORPS OF ENGINEERS. Structures to Resist the Effects of Accidental Explosions : TM5-1300 [S]. USA: US Army, 1990. [7] American Society of Civil Engineering. Design of Blast Resistant Buildings in Petrochemical Facilities: ASCE-41088 [S]. USA: ASCE, 2010. [8] BIGGS J M. Introduction to structural dynamics[M]. New York: McGraw-Hill, 1964. [9] 伍俊, 刘晶波, 杜义欣. 汽车炸弹爆炸下装配式防爆墙弹塑性动力计算与数值分析 [J]. 防灾减灾工程学报, 2007, 27(4): 394–400 doi: 10.3969/j.issn.1672-2132.2007.04.004WU Jun, LIU Jingbo, DU Yixin. Elastic-plastic dynamic calculation and numerical analysis of assembling blast resistant wall under effect of vehicle bombs [J]. Journal of Disaster Prevention & Mitigation Engineering, 2007, 27(4): 394–400 doi: 10.3969/j.issn.1672-2132.2007.04.004 [10] 颜海春, 方秦, 张亚栋, 等. 化爆作用下人防工程口部封堵梁的计算与分析 [J]. 解放军理工大学学报: 自然科学版, 2001, 2(3): 78–81 doi: 10.3969/j.issn.1009-3443.2001.03.018YAN Haichun, FANG Qin, ZHANG Yadong, et al. Calculation and analysis of beam for blocking entrance in civil air-defense engineering under conventional weapon explosion [J]. Journal of PLA University of Science & Technology, 2001, 2(3): 78–81 doi: 10.3969/j.issn.1009-3443.2001.03.018 [11] 杨涛春, 李国强, 王开强. 接触爆炸荷载下钢—混凝土组合梁简化设计方法研究 [J]. 四川建筑科学研究, 2009, 35(6): 1–4 doi: 10.3969/j.issn.1008-1933.2009.06.001YANG Taochun, LI Guoqiang, WANG Kaiqiang. Research on the simplified design method for steel-concrete composite beam subjected to contact blast loading [J]. Sichuan Building Science, 2009, 35(6): 1–4 doi: 10.3969/j.issn.1008-1933.2009.06.001 [12] BAKER W E. Explosion hazards and evaluation[M]. Amsterdam: Elsevier Scientific Pub. Co. 1983. [13] 杨科之, 王年桥. 化爆条件下地面结构等效静载计算方法 [J]. 防护工程, 2001, 23(2): 1–7YANG Kezhi, WANG Nianqiao. Equivalent static load calculation method for ground structures under chemical explosion [J]. Protective Engineering, 2001, 23(2): 1–7 [14] 杨科之, 杨秀敏, 王年桥. 内爆荷载作用下结构等效静载计算方法 [J]. 解放军理工大学学报: 自然科学版, 2002, 3(4): 31–33 doi: 10.3969/j.issn.1009-3443.2002.04.008YANG Kezhi, YANG Xiumin, WANG Nianqiao. Equivalent Static Load Calculation Method of Structure Subjected to Internal Explosion [J]. Journal of PLA University of Science & Technology, 2002, 3(4): 31–33 doi: 10.3969/j.issn.1009-3443.2002.04.008 [15] 陈俊杰, 高康华, 孙敖. 爆炸条件下结构超压-冲量曲线简化计算研究 [J]. 振动与冲击, 2016, 35(13): 224–232 doi: 10.13465/j.cnki.jvs.2016.13.036CHEN Junjie, GAO Kanghua, SUN Ao. Simplified calculation method for pressure-impulse curve under blast load [J]. Journal of Vibration and Shock, 2016, 35(13): 224–232 doi: 10.13465/j.cnki.jvs.2016.13.036 [16] CHEN H L, JIN F N, FAN H L. Elastic responses of underground circular arches considering dynamic soil-structure interaction: A theoretical analysis [J]. Acta Mechanica Sinica, 2013, 29(1): 110–122. doi: 10.1007/s10409-013-0012-7 [17] SHI Y, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. doi: 10.1016/j.ijimpeng.2007.09.001 [18] GANTES C J, PNEVMATIKOS N G. Elastic–plastic response spectra for exponential blast loading [J]. International Journal of Impact Engineering, 2004, 30(3): 323–343. doi: 10.1016/S0734-743X(03)00077-0 [19] LOUCA L A, PUNJANI M, HARDING J E. Non-linear analysis of blast walls and stiffened panels subjected to hydrocarbon explosions [J]. Journal of Constructional Steel Research, 1996, 37(2): 93–113. doi: 10.1016/0143-974X(95)00026-R [20] 刘亚玲, 耿少波, 刘玉存, 等. 钢箱梁抗爆试验中冲击波超压测试方法研究 [J]. 中北大学学报学报: 自然科学版, 2018, 39(5): 609–614, 620 doi: 10.3969/j.issn.1673-3193.2018.05.021LIU Yaling, GENG Shaobo, LIU Yucun, et al. Research on Shock Wave Overpressure Measurement Method in the Anti-Explosion Test of Steel Box Girder [J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 609–614, 620 doi: 10.3969/j.issn.1673-3193.2018.05.021