Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014
-
摘要:
采用铝基组合式电磁粒子速度计技术,通过一维平面冲击实验研究了JB-9014炸药的冲击起爆反应增长规律,获得了11.33~14.18 GPa不同初始入射冲击压力下JB-9014炸药撞击界面及其内部不同深度处冲击前沿的波后粒子速度,进而得到粒子速度-时间波剖面图,并拟合得到未反应JB-9014炸药的Hugoniot关系。此外,根据冲击波跟踪器所测波形获得了不同冲击压力下的到爆轰时间及距离。
-
关键词:
- JB-9014炸药 /
- 铝基组合式电磁粒子速度计 /
- 粒子速度-时间波剖面图 /
- 雨贡纽关系 /
- Pop图
Abstract:To find out about the patterns and regularities of the reaction growth of shock initiation on JB-9014 explosives, using aluminum-based multiple EMV, we conducted six one-dimensional planar impact experiments in the gun-power platform. Under different initial pressures (11.33−14.18 GPa), we measured the particle velocity versus time up(t) and wave-profiles in the JB-9014 explosive at 9 different distances from the impact plane, and recorded the position of the shock front with time x(t), successfully fitting the unreacted explosive JB-9014 Hugoniot relation. Furthermore, we obtained the time and distance to detonation are estimated according to both the wave-profiles and the x(t) trajectories from the shock wave tracker gauges.
-
表 1 JB-9014炸药平面冲击实验参数
Table 1. Parameters of plane impact experiments on JB-9014 explosive
实验 ρ0/(g·cm−3) uI/(km·s−1) p0/GPa 实验 ρ0/(g·cm−3) uI/(km·s−1) p0/GPa 上端 下端 上端 下端 A 1.897 1.896 1.517 11.472 D 1.9 1.902 1.553 12.830 B 1.897 1.894 1.686 14.175 E 1.895 1.489 13.645 C 1.898 1.893 1.651 13.667 F 1.9 1.893 1.529 11.334 注:Shot E炸药样品的密度数据缺失,故炸药样品初始密度用平均密度1.895 g/cm3替代。 表 2 JB-9014炸药的实验数据
Table 2. Particle velocity vs shock velocity data for JB-9014
实验 ρ0/(g·cm−3) up/(km·s−1) us/(km·s−1) 实验 ρ0/(g·cm−3) up/(km·s−1) us/(km·s−1) 1 1.887 0.508 3.32 16 1.891 0.963 4.501 2 1.889 0.510 3.34 17 1.894 0.574 3.347 3 1.887 0.523 3.37 18 1.893 0.735 3.990 4 1.885 0.546 3.47 19 1.893 0.913 4.369 5 1.891 0.582 3.43 20 1.898 1.084 4.727 6 1.885 0.592 3.37 21 1.898 0.481 3.408 7 1.891 0.772 3.60 22 1.898 0.604 3.776 8 1.887 1.017 4.11 23 1.893 0.639 4.000 9 1.885 1.074 4.12 24 1.889 0.813 4.136 10 1.889 1.445 4.32 A 见表1 1.282 4.718 11 1.884 1.425 4.63 B 见表1 1.428 5.236 12 1.885 1.447 4.65 C 见表1 1.431 5.040 13 1.893 0.480 3.433 D 见表1 1.373 4.918 14 1.889 0.618 3.788 E 见表1 1.330 4.997 15 1.893 0.779 4.028 F 见表1 1.286 4.647 表 3 JB-9014炸药的数据
Table 3. data for JB-9014 explosives
实验 ρ0/(g·cm−3) ρ0/(g·cm−3) tD/μs xD/mm 实验 ρ0/(g·cm−3) p0/GPa tD/μs xD/mm 上端 下端 上端 下端 A 1.897 1.896 11.472 26.48 13.97 D 1.900 1.902 12.830 23.04 8.54 B 1.897 1.894 14.175 53.01 8.35 E 1.895 13.645 41.38 9.05 C 1.898 1.893 13.667 21.57 7.38 F 1.900 1.893 11.334 24.09 9.59 -
[1] 潘昊, 胡晓棉. 钝感炸药的超压爆轰与冲击起爆过程数值模拟 [J]. 爆炸与冲击, 2006, 26(2): 174–178. DOI: 10.11883/1001-1455(2006)02-0174-05PAN Hao, HU Xiaomian. Numerical simulation for overdriven and shocking-to-detonation transition of insensitive high explosives [J]. Explosion and Shock Waves, 2006, 26(2): 174–178. DOI: 10.11883/1001-1455(2006)02-0174-05 [2] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R, et al. Measurement of shock initiation in the tri-amino-tri-nitro- benzene based explosive PBX9502: wave forms embedded gauges and comparison of four different material lots [J]. Journal of Applied Physics, 2006, 99(11): 1–17. DOI: 10.1063/1.2195191. [3] GUSTAVSEN R L, GEHR R J, ALCON R R, et al. Shock initiation of the tri-amino-tri-nitro-benzene based explosive PBX 9502 cooled to-55re [J]. Journal of Applied Physics, 2012, 112(7): 074909. DOI: 10.1063/1.4757599. [4] 张旭, 池家春, 冯民贤, 等. JB-9014钝感炸药冲击绝热线测量 [J]. 高压物理学报, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011ZHANG Xu, CHI Jiachun, FENG Minxian, et al. Hugoniot relation of JB-9014 insensitive high explosive [J]. Chinese Journal of High Pressure Physics, 2001, 15(4): 304–308. DOI: 10.11858/gywlxb.2001.04.011 [5] 李志鹏, 黄毅民, 何碧, 等. 用组合式电磁粒子速度计研究JOB-9003炸药的冲击起爆过程 [J]. 爆炸与冲击, 2006, 26(3): 269–272. DOI: 10.11883/1001-1455(2006)03-0269-04LI Zhipeng, HUANG Yiming, HE Bi, et al. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive [J]. Explosion and Shock Waves, 2006, 26(3): 269–272. DOI: 10.11883/1001-1455(2006)03-0269-04 [6] 李金河, 訾攀登, 张旭, 等. 用组合式电磁粒子速度计研究一种活性材料的反应特性 [J]. 高压物理学报, 2017, 31(3): 309–314. DOI: 10.11858/gywlxb.2017.03.013LI Jinhe, ZI Pandeng, ZHANG Xu, et al. Reaction characteristics of reactive material investigated by embedded electromagnetic velocity gauges [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 309–314. DOI: 10.11858/gywlxb.2017.03.013 [7] ZHANG Xu, WANG Yanfei, HUANG Wenbin, et al. Reaction buildup of PBX explosives JOB-9003 under different initiation pressures [J]. Journal of Energetic Materials, 2017, 35(2): 197–212. DOI: 10.1080/07370652.2016.1250841. [8] 刘杰, 王广军, 张旭, 等. HMX基PBX粒子速度测量的铝基组合电磁粒子速度计技术 [J]. 含能材料, 2016, 24(3): 300–305. DOI: 10.11943/j.issn.1006-9941.2016.03.016LIU Jie, WANG Guangjun, ZHANG Xu, et al. Al-based electromagnetic particle velocity gauge technique of measuring the particle velocity of HMX-based PBX explosives [J]. Chinese Journal of Energetic Materials, 2016, 24(3): 300–305. DOI: 10.11943/j.issn.1006-9941.2016.03.016 [9] 王延飞, 刘杰, 张旭, 等. 未反应炸药JOB-9003的JWL状态方程 [J]. 高压物理学报, 2016, 30(5): 387–391. DOI: 10.11858/gywlxb.2016.05.007WANG Yanfei, LI Jie, ZHANG Xu, et al. JWL equation of state of unreacted JBO-9003 explosive [J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 387–391. DOI: 10.11858/gywlxb.2016.05.007 [10] BURNS M J, GUSTAVSEN R L, BARTRAM B D. One-dimensional plate impact experiments on the cyclotetramethylene tetranitramine (HMX) based explosive EDC32 [J]. Journal of Applied Physics, 2012, 112: 064910. DOI: 10.1063/1.4752865.