列车分布式吸能系统的波传播特性和参数分析

丁兆洋 郑志军 虞吉林

丁兆洋, 郑志军, 虞吉林. 列车分布式吸能系统的波传播特性和参数分析[J]. 爆炸与冲击, 2019, 39(3): 035101. doi: 10.11883/bzycj-2018-0053
引用本文: 丁兆洋, 郑志军, 虞吉林. 列车分布式吸能系统的波传播特性和参数分析[J]. 爆炸与冲击, 2019, 39(3): 035101. doi: 10.11883/bzycj-2018-0053
DING Zhaoyang, ZHENG Zhijun, YU Jilin. Wave propagation characteristics and parameter analysis of the distributed energy absorption system of trains[J]. Explosion And Shock Waves, 2019, 39(3): 035101. doi: 10.11883/bzycj-2018-0053
Citation: DING Zhaoyang, ZHENG Zhijun, YU Jilin. Wave propagation characteristics and parameter analysis of the distributed energy absorption system of trains[J]. Explosion And Shock Waves, 2019, 39(3): 035101. doi: 10.11883/bzycj-2018-0053

列车分布式吸能系统的波传播特性和参数分析

doi: 10.11883/bzycj-2018-0053
基金项目: 国家自然科学基金(11372307, 11772330);中央高校基本科研业务费专项资金(WK2480000003)
详细信息
    作者简介:

    丁兆洋(1988- ),男,博士研究生, dingzhy@mail.ustc.edu.cn

    通讯作者:

    郑志军(1979- ),男,副教授, zjzheng@ustc.edu.cn

  • 中图分类号: O347.4

Wave propagation characteristics and parameter analysis of the distributed energy absorption system of trains

  • 摘要: 建立了考虑车厢中弹性波传播影响的列车分布式吸能系统的简化理论模型。基于一维应力波理论,对碰撞过程中各吸能器的响应进行了理论分析,得到相关的控制方程并求解。观察到各吸能器界面上典型的阶段性、平台样的速度响应,并分析了其机理,进而对如何合理设置和排布吸能器进行了分析。结果表明:对于相邻的吸能器,碰撞前端吸能器的压垮强度应高于后端,否则后端吸能器无法同时发挥作用;各吸能器的平台应力的大小和排布是决定吸能系统作用效果的控制参量,能够决定各吸能器的吸能时长和吸能总量。具体分析了相邻吸能器的平台应力分布对系统吸能性能的影响,得到了在所研究的情况下使总吸能量最大的优化设计参数。该研究可为列车分布式吸能系统的优化设计提供理论指导。
  • 图  1  吸能器的R-PP-L模型

    Figure  1.  The rate-independent, rigid-perfectly plastic-locking (R-PP-L) model for impact energy absorber

    图  2  车头和车厢的简化模型

    Figure  2.  Simplified models of train head and carriage

    图  3  列车碰撞情形示意图

    Figure  3.  Schematic diagram of train collision

    图  4  碰撞中的变形过程和应力波传播情况

    Figure  4.  Schematic diagram of the deformation process and the propagation of stress waves

    图  5  界面A2和A3在阶段2内的应力 (a) 和速度 (b) 响应结果

    Figure  5.  Stress (a) and velocity (b) response results of interfaces A2 and A3 at stage 2

    图  6  界面A4、A5在阶段3内的应力 (a) 和速度 (b) 响应结果

    Figure  6.  Stress (a) and velocity (b) response results of interfaces A4 and A5 at stage 3

    图  7  界面A1、A2和A3的速度(a)和应力(b)的历史曲线

    Figure  7.  Velocity (a) and stress (b) response results of interfaces A1, A2 and A3

    图  8  碰撞过程中各吸能层内的压溃波波速

    Figure  8.  Crushing wave speed in each energy absorbing layer

    图  9  吸能层1、吸能层2的吸能量

    Figure  9.  Energy absorption of layer 1 and layer 2

    图  10  三种参数设置下各吸能层中压溃波波速的比较

    Figure  10.  Crushing wave Speed in each energy absorbing layer for three cases of different parameters

    图  11  三种模型参数设置下各吸能层中吸能量的比较

    Figure  11.  Energy absorption in each energy absorption layer for three cases of model parameters

    图  12  不同的α设置下吸能层1、吸能层2和总吸能量的对照结果

    Figure  12.  Comparison of energy absorption for different parameters of α

    表  1  不同模型的平台应力设置和吸能量

    Table  1.   The setting of plateau stresses and the energy absorption of the models

    模型 平台应力/MPa 吸收能量/kJ 吸能总量/
    kJ
    吸能层1 吸能层2 吸能层1 吸能层2
    原模型 150 100 150.9 299.6 450.5
    对照模型1 130 100 234.5 134.9 369.4
    对照模型2 150 80 131.5 224.2 355.7
    下载: 导出CSV
  • [1] DRAZETIC P, TASSIN R, RAVALARD Y, et al. Experimentation and modelling of climbing phenomena of guided transport vehicles [J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail & Rapid Transit, 1995, 209(16): 11–17. doi: 10.1243/PIME_PROC_1995_209_249_02
    [2] AMBRÓSIO J A C, PEREIRA M F O S, DIAS J P. Distributed and discrete nonlinear deformations on multibody dynamics [J]. Nonlinear Dynamics, 1996, 10(4): 359–379. doi: 10.1007/BF00045482
    [3] HAN H S, KOO J S. Simulation of train crashes in three dimensions [J]. Vehicle System Dynamics, 2003, 40(6): 435–450. doi: 10.1076/vesd.40.6.435.17906
    [4] FMILHO J, CAMBRÓSIO J A, SPEREIRA M F O. Validated multibody model for train crash analysis [J]. International Journal of Crashworthiness, 2003, 8(4): 339–352. doi: 10.1533/ijcr.2003.0242
    [5] PEREIRA M, AMBROSIO J, DIAS J. Crashworthiness analysis and design using rigid-flexible multibody dynamics with application to train vehicles [J]. International Journal for Numerical Methods in Engineering, 1997, 40(4): 655–687. doi: 10.1002/(SICI)1097-0207(19970228)40:4<655:AID-NME84>3.0.CO;2-N
    [6] DIAS J P, PEREIRA M S. Optimization methods for crashworthiness design using multibody models [J]. Computers & Structures, 2004, 82(17-19): 1371–1380. doi: 10.1016/S0045-7949(04)00122-1
    [7] DUAN L, SUN G, CUI J, et al. Crashworthiness design of vehicle structure with tailor rolled blank [J]. Structural & Multidisciplinary Optimization, 2016, 53(2): 321–338. doi: 10.1007/s00158-015-1315-z
    [8] TYRELL D, PERLMAN A B. Evaluation of rail passenger equipment crashworthiness strategies [J]. Transportation Research Record Journal of the Transportation Research Board, 2003, 1825(1): 8–14. doi: 10.3141/1825-02
    [9] WKIRKPATRICK S, MSCHROEDER, SIMONS J W. Evaluation of passenger rail vehicle crashworthiness [J]. International Journal of Crashworthiness, 2001, 6(1): 95–106. doi: 10.1533/cras.2001.0165
    [10] SIMONS J W, KIRKPATRICK S W. High-speed passenger train crashworthiness and occupant survivability [J]. International Journal of Crashworthiness, 2012, 4(2): 121–132. doi: 10.1533/cras.1999.0095
    [11] BELINGARDI G, CAVATORTA M P, DUELLA R. Material characterization of a composite–foam sandwich for the front structure of a high speed train [J]. Composite Structures, 2003, 61(1/2): 13–25. doi: 10.1016/S0263-8223(03)00028-X
    [12] HU D, WANG Y, SONG B, et al. Energy absorption characteristics of a foam-filled tri-tube under axial quasi-static loading: experiment and numerical simulation [J]. International Journal of Crashworthiness, 2017: 1–16. doi: 10.1080/13588265.2017.1331494
    [13] 李松晏, 郑志军, 虞吉林. 高速列车吸能结构设计和耐撞性分析 [J]. 爆炸与冲击, 2015, 35(2): 164–170 doi: 10.11883/1001-1455(2015)02-0164-07

    LI Songyan, ZHENG Zhijun, YU Jilin. Energy-absorbing structure design and crashworthiness analysis of high-speed trains [J]. Explosion and Shock Waves, 2015, 35(2): 164–170 doi: 10.11883/1001-1455(2015)02-0164-07
    [14] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. doi: 10.1016/S0734-743X(97)00016-X
    [15] ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. doi: 10.1016/j.ijimpeng.2011.09.009
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  6937
  • HTML全文浏览量:  2101
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-04-19
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回