Blasting vibration signal analysis technology of construction of nuclear power plant based on improved MP-WVD algorithm
-
摘要: 针对爆破施工产生的振动问题,结合现有信号分析方法优缺点,引入MP-WVD组合算法解决信号分析过程中交叉项干扰问题,可提高时频分辨率,满足精确提取核电爆破振动响应信号时频分布特征的需求;将HHT算法引入MP算法数据的预处理,成功降低了MP算法运算复杂度,可为大数据量分析奠定基础。运用该算法对漳州核电一期工程场地平整土石方爆破工程振动监测信号进行分析,精确提取了爆破振动信号的时频特征。Abstract: In this study, an MP-WVD combination algorithm is introduced to solve the cross term interference problem in signal analysis. The time-frequency resolution has been improved, which meets the requirement of accurately extracting time-frequency distribution characteristics of nuclear power station blasting vibration response signals. Introduction of HHT algorithm into the data preprocessing of MP algorithm has successfully reduced the computational complexity of MP algorithm, and laid the foundation for large data analysis. Combined with the first phase project of Zhangzhou nuclear power station, the improved algorithm has been applied to analyze blasting vibration signals. The time-frequency characteristics of blasting vibration signals in the surrounding terrain and earth rock environment of the nuclear power station were obtained. This will provide reference for vibration monitoring and safety protection of blasting in the extension project.
-
炸药水中爆炸实验(水中实验)是研究非理想炸药能量释放特性的一种重要方法, 炸药水中爆炸效应研究对水中兵器、军事弹药和水下爆破研究都有极大的帮助。水中实验能够弥补冲击臼法和铅块法的不足, 对药量少于10 g便不能完全爆炸的炸药做功能力进行测试[1]。水中爆炸对炸药能量释放的测试不同于空气中的实验。水中爆炸能量分为3部分:炸药的冲击波能、气泡能和加热水所消耗的能量, 三部分结合才能对炸药爆炸产生的总能量进行评估[2-5]。目前水中爆炸的相关研究大多集中在水中爆炸做功能力和水中爆炸毁伤效应2方面, 对于水中爆轰产物状态方程的基础研究工作则极少报道[6]。
JWL状态方程是重要的爆轰产物状态方程, 能够对炸药爆轰产物的膨胀作功过程进行精确的描述[7]。圆筒实验是测试炸药爆轰产物JWL状态方程参数的主要方法, 由于实验材料的限制, 圆筒实验采用的铜制圆筒在爆炸反应的中后期会发生破裂, 测试时间有限[8], 所以通过圆筒实验无法获得爆炸反应后期的产物膨胀过程, 因此根据圆筒实验结果拟合的JWL参数能否准确反应爆轰产物中后期的能量释放特性存在疑问。在水中爆炸实验中, 水介质可被看作无限大的壳体, 在较长时间(毫秒量级)内不会发生破裂, 炸药爆轰产物将从高温高压状态逐渐转变为高温中压状态, 甚至高温常压和负压状态。因此, 对水中爆炸效应的研究需要能够反映爆炸中后期(中低压状态)产物膨胀特性的参数, 由于圆筒实验仅能准确描述爆炸前期(高温、高压状态)产物的膨胀, 所以对炸药在水中的爆炸现象进行研究时不能依赖圆筒实验所得JWL参数。
龙新平等[9]研究发现, PBX-01炸药在水中爆炸时, 水不会发生汽化, 爆轰产物与水之间界面清晰。因此本文中进行PBX-01炸药的水中爆炸实验, 通过高速扫描相机记录爆轰产物驱动水介质膨胀的过程, 并利用ANSYS/LS-DYNA程序建立炸药的水中实验爆炸模型, 通过将实验结果与数值计算结果进行对比, 确定PBX-01炸药水中爆轰产物的JWL状态方程参数, 并将确定的JWL参数应用于模拟PBX-01炸药爆轰驱动水的实验, 以验证状态方程参数的有效性。
1. 实验介绍
实验用PBX-01炸药(主要成分为HMX)密度1.86 g/cm3、爆压36.8 GPa、爆速8.87 km/s。为了便于与圆筒实验进行比较, 本文中PBX-01炸药采用与标准圆筒实验相同的Ø25.4 mm的药柱。实验所用测试系统如图 1所示。药柱置于支架中心位置, 光源采用氩气光源, 采用延时同步起爆装置控制PBX-01炸药及光源炸药的起爆时间。用高速转镜相机记录爆轰产物在水介质中的膨胀运动过程, 相机转速为30 000 r/min, 扫描速度为1.5 km/s。
2. 实验结果及数值分析
2.1 实验结果
高速摄像机记录的扫描底片如图 2所示, 爆轰产物与水之间的界面十分清晰。图 2中A1为膨胀起始点, A1A3为冲击波迹线, A2A4为爆轰产物膨胀迹线。图 3是文献[10]中含铝炸药圆筒实验的高速摄像机记录的扫描底片图, A5为膨胀起始点, A5A6是爆轰产物膨胀迹线。对比水中实验扫描底片图 2与圆筒实验扫描底片图 3, 水中实验产物膨胀迹线A1A2段不能显示, 无法读数, 只能由A2点读起, 圆筒实验则从膨胀起始点A5起至A6点均能读出, 但是水中实验测试时间要长于圆筒实验。
采用龙新平[11]确定的PBX-01炸药圆筒实验的JWL状态方程参数及本文通过水中实验确定的PBX-01炸药爆轰产物的JWL状态方程参数, 如表 1所示, 其中:A、B、R1、R2和ω状态方程的待定参数, E0为初始比内能。
表 1 PBX-01炸药爆轰产物JWL状态方程参数Table 1. The JWL state equation parameters of the PBX-01 detonation products实验 A/GPa B/GPa R1 R2 ω E0 圆筒实验 406.4 16.3 3.90 1.45 0.5 11.48 水中实验 356.5 26.3 3.40 1.14 0.5 12.48 2.2 数值分析
采用ANSYS/LS-DYNA程序建立水中实验爆炸模型, 如图 4所示。JWL状态方程为:
p=A(1−ωR1vg)e−R1vg+B(1−ωR2vg)e−R2vg+ωEvg (1) 式中:p为压力, vg为气体产物的比容, E为比内能。在计算中, 对炸药采用高能炸药燃烧模型(MAT-HIGH EXPLOSIVE-BURN), 水采用Grüneisen状态方程描述[12]:
p=ρc2μ[1+(1−γ0/2)μ−aμ2/2][1−(s1−1)μ−s2μ2/(μ+1)−s3μ3/(μ+1)2]2+(γ0+aμ)E (2) 式中:ρ为密度, c为体积声速, μ为应力波传播速度, γ0为Grüneisen常数, a是γ0的一阶体积修正, s1、s2、s3是μ -p曲线的斜率系数[13]。玻璃选用理想弹塑性材料:密度为2.3 g/cm3, 剪切模量为4 GPa, 屈服强度为0.12 GPa[14]。
将圆筒实验和水中实验确定的JWL状态方程参数(见表 1)用于水中实验的数值模拟, 计算得到测试点爆轰产物膨胀的位移(d)-时间关系曲线, 并与水中实验结果进行对比, 结果如图 5所示。
由图 5可知, 圆筒实验确定的JWL参数用于图 4的水中实验数值模拟时(图 4), 模拟结果与实验值存在一定的偏差, 尤其是在爆炸初期。对部分时间点的差值进行统计:爆轰初期3.5 μs时二者差值为1.02 mm, 约为实验值的14%;产物传播至10.4 μs时, 二者差值为1.32 mm, 约为实验值的9.6%;传播至膨胀中期17~25 μs时二者差值逐渐减小; 传播至25~30 μs时二者位移差出现交叉; 至43 μs时差值为0.92 mm, 约为实验值的3.6%。上述数据说明, 圆筒实验确定的JWL参数在反映炸药水中爆轰产物的膨胀状态时有所不足(通过圆筒实验拟合JWL参数时要求实验值与计算值误差小于1%)。本文中认为造成爆轰前期存在偏差的原因可能有以下2点:(1)根据图 2所示, 水中实验爆轰产物膨胀初期有可能受到冲击波的影响, 导致读数误差较大, 因此圆筒实验确定的JWL参数无法准确描述水中爆轰产物初期的膨胀过程; (2)圆筒实验与水中实验所用材料不同, 即铜与水性质不同, 因此爆炸前期2种实验爆轰产物传播轨迹不同。由图 5可以看出, 圆筒实验模拟结果与水中实验值后期相比偏高, 其原因可能是因为:即使是在爆轰产物传播至30 μs时, 水介质仍未破裂, 因此30 μs后水对爆轰产物的传播仍然存在束缚作用。本文中在处理数据时可能存在实验误差, 5 μs时实验值与计算值差1%, 25 μs时实验值与计算值差0.2%, 43 μs时实验值与计算值差0.3%, 但比较图 5中的实验值与计算结果, 本文中所用水中实验确定的JWL状态方程参数能够更准确的描述PBX-01炸药水中爆轰产物的膨胀过程。
如图 5所示, 本文水中实验对水中爆轰产物膨胀过程记录的有效时间达到40 μs以上, 能够对爆轰产物膨胀过程的中后期进行描述。圆筒实验是在空气中进行的, 其对爆轰产物的膨胀过程描述的有效时间仅在20 μs左右, 考虑到炸药爆炸时水介质在较长时间内不会发生破裂, 所以, 确定炸药的水中爆轰产物状态方程参数应用水中实验的方法更为可行。
3. 结论
本通过水中实验确定的JWL状态方程参数对水中爆炸过程的描述更接近实际情况。水中实验不能替代圆筒实验, 但是与圆筒实验相比, 水中实验更适用于炸药水中爆炸效应的分析。
水中实验法确定水中爆轰产物状态方程方法的建立, 对于常用于水下爆炸的炸药(如含铝炸药)的水中爆炸效应分析和水中兵器的应用研究具有重要意义。
-
表 1 两种方法所用机时对比
Table 1. Comparison of machine time between two methods
合成信号类型 信号波形 传统 MP 所用机时/s 改进 MP 所用机时/s 单正弦 96.11 1.90 双正弦 77.13 1.90 三正弦 82.96 1.71 典型爆破振动信号 82.08 1.58 注:信号长度,N=512,残差截断阈值,σ=0.05,CPU 型号,Intel Core i7-4710MQ,主频 2.5~3.1 GHz。 表 2 爆破参数表
Table 2. Blasting parameters
孔径/mm 孔数 孔深/m 孔距/m 排距/m 抵抗线/m 孔药量/kg 段药量/kg 总药量/kg 115 47 13.0 5.5 3.2 2.2 85.0 170.0 3 984 -
[1] 方群才, 郑国纲. 漳州核电厂一期工程厂址区域核应急方案编制介绍 [J]. 科技传播, 2016, 8(5): 168–169. DOI: 10.16607/j.cnki.1674-6708.2016.05.097FANG Quncai, ZHENG Guogang. Introduction of nuclear emergency plan for site area of phase I project of Zhangzhou nuclear power plant [J]. Public Communication of Science and Technology, 2016, 8(5): 168–169. DOI: 10.16607/j.cnki.1674-6708.2016.05.097 [2] 郭涛, 方向, 谢全民, 等. 频率切片小波变换在爆破振动信号时频特征精确提取中应用 [J]. 振动与冲击, 2013, 32(22): 73–78. DOI: 10.13465/j.cnki.jvs.2013.22.011GUO Tao, FANG Xiang, XIE Quanmin, et al. Application of FSWT in accurate extraction of time-frequency features for blasting vibration signals [J]. Journal of Vibration and Shock, 2013, 32(22): 73–78. DOI: 10.13465/j.cnki.jvs.2013.22.011 [3] 马华原, 龙源, 郭涛. 田湾核电站基础开挖爆破振动检测与数据分析 [J]. 爆破, 2015, 32(3): 85–90 doi: 10.3963/j.issn.1001-487X.2015.03.015MA Huayuan, LONG Yuan, GUO Tao. Monitoring and analysis of blasting vibration of foundation excavation of tianwan nuclear power Plant [J]. Blasting, 2015, 32(3): 85–90 doi: 10.3963/j.issn.1001-487X.2015.03.015 [4] 李夕兵, 张义平, 左宇军, 等. 岩石爆破振动信号的EMD滤波与消噪 [J]. 中南大学学报(自然科学版), 2006(1): 150–154 doi: 10.3969/j.issn.1672-7207.2006.01.029LI Xibing, ZHANG Yiping, ZUO Yujun, et al. EMD filtering and denoising of rock blasting vibration signal [J]. Journal of Central South University (Science and Technology), 2006(1): 150–154 doi: 10.3969/j.issn.1672-7207.2006.01.029 [5] 魏新江, 谢超, 丁玉琴. 基于平均频率和HHT变换的隧道爆破震动信号研究 [J]. 矿业研究与开发, 2017, 37(7): 13–18WEI Xinjiang, XIE Chao, DING Yuqin. Study on the signals of tunnel blasting vibration based on average frequency and HHT method [J]. Mining Research and Development, 2017, 37(7): 13–18 [6] 周辉, 龙源, 钟明寿, 等. 基于双参数MP算法的不同孔深爆炸地震波特性研究 [J]. 振动与冲击, 2016, 35(18): 76–81. DOI: 10.13465/j.cnki.jvs.2016.18.013ZHOU Hui, LONG Yuan, ZHONG Mingshou, et al. Characteristics analysis of explosion seismic waves with different hole depth based on the method of double parameters matching pursuit [J]. Journal of Vibration and Shock, 2016, 35(18): 76–81. DOI: 10.13465/j.cnki.jvs.2016.18.013 [7] 贾亚飞, 朱永利, 王刘旺. 基于VMD和Wigner-Ville分布的局放信号时频分析 [J]. 系统仿真学报, 2018, 30(2): 569–578JIA Yafei, ZHU Yongli, WANG Liuwang. Time-frequency analysis of partial discharge signal based on VMD and Wigner-Ville distribution [J]. Journal of System Simulation, 2018, 30(2): 569–578 [8] 井爱雯, 刘云, 马轶丽. 基于MP算法的语音信号稀疏分解 [J]. 计算机工程与应用, 2009, 45(5): 144–146 doi: 10.3778/j.issn.1002-8331.2009.05.042JING Aiwen, LIU Yun, MA Yili. Speech signal sparse decomposition based on matching pursuit algorithm [J]. Computer Engineering and Applications, 2009, 45(5): 144–146 doi: 10.3778/j.issn.1002-8331.2009.05.042 [9] 张汛汛, 张繁昌, 刘汉卿. 基于快速匹配追踪算法的地震道集剩余时差校正 [J]. 石油物探, 2015, 54(4): 420–426 doi: 10.3969/j.issn.1000-1441.2015.04.008ZHANG Xunxun, ZHANG Fanchang, LIU Hanqing. Seismic gathers residual moveout correction based on fast matching pursuit algorithm [J]. Geophysical Prospecting for Petroleum, 2015, 54(4): 420–426 doi: 10.3969/j.issn.1000-1441.2015.04.008 [10] 蒋雷龙, 曾小平, 汪胜金, 等. 台山核电厂安全控制爆破技术研究 [J]. 铁道科学与工程学报, 2010, 7(5): 122–125 doi: 10.3969/j.issn.1672-7029.2010.05.024JIANG Leilong, ZENG Xiaoping, WANG Shengjin, et al. Research on safety control blasting technology of Taishan nuclear power plant [J]. Journal of Railway Science and engineering, 2010, 7(5): 122–125 doi: 10.3969/j.issn.1672-7029.2010.05.024 [11] 范兴利, 成谷. 基于Morlet小波尺度参数寻优的匹配追踪时频分析 [J]. 中山大学学报(自然科学版), 2014, 53(6): 85–92FAN Xingli, CHENG Gu. Matching pursuit time-frequency analysis based on morlet wavelet scale parameter optimization [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(6): 85–92 [12] 钟明寿, 周辉, 刘影, 等. 基于改进匹配追踪算法的化爆地震波信号时频特征提取 [J]. 爆炸与冲击, 2017, 37(6): 931–938ZHONG Mingshou, ZHOU Hui, LIU Ying, et al. Time-frequency analysis of explosion seismic signal based on improved matching pursuit [J]. Explosion and Shock Waves, 2017, 37(6): 931–938 [13] 魏建国, 张忠, 张心斌. 核电站筏基大体积混凝土温控监测及仿真分析 [J]. 工业建筑, 2017, 37(6): 931–938WEI Jianguo, ZHANG Zhong, ZHANG Xinbin. Temperature-controlling monitoring and emulation analysis of mass-concrete of raft foundation of nuclear power plant [J]. Industrial Construction, 2017, 37(6): 931–938 [14] 方群才, 郑国纲. 漳州核电厂一期工程厂址区域核应急方案编制介绍 [J]. 科技传播, 2016, 8(5): 168–169FANG Quncai, ZHENG Guogang. Introduction of regional nuclear emergency plan for Zhangzhou nuclear power plant phase I project site [J]. Public Communication of Science & Technology, 2016, 8(5): 168–169 [15] 杨真真, 杨震, 孙林慧. 信号压缩重构的正交匹配追踪类算法综述 [J]. 信号处理, 2013, 29(4): 486–496 doi: 10.3969/j.issn.1003-0530.2013.04.011YANG Zhenzhen, YANG Zhen, SUN Linhui. A survey on orthogonal matching pursuit type algorithms for signal compression and reconstruction [J]. Journal of Signal Processing, 2013, 29(4): 486–496 doi: 10.3969/j.issn.1003-0530.2013.04.011 [16] 孙强, 王梦晓, 徐玉山, 等. 岩巷爆破振动信号的HHT分析与应用[J]. 工程爆破, 2016, 22(1): 1-7.SUN Qiang, WANG Mengxiao, XU Yushan, et al. HHT analysis and application of blasting vibration in rock roadway excavation [J]. Engineering Blasting, 2016, 22 (1): 1-7. 期刊类型引用(1)
1. 李科斌, 董新龙, 李晓杰, 闫鸿浩, 王小红. 水下爆炸实验法在工业炸药JWL状态方程测定中的应用研究. 兵工学报. 2020(03): 488-494 . 百度学术
其他类型引用(2)
-