Analysis on whole dynamical fracture process of tight sandstone tunnel model under impact loading
-
摘要: 为了开展在不同冲击载荷作用下巷道围岩内裂纹的起裂、扩展及止裂等问题,以可调速冲击试验机进行动态加载试验,采用致密青砂岩制作裂纹巷道模型试件,并利用裂纹扩展计分别记录了动态起裂、扩展、止裂等时刻,对裂纹扩展速度的变化规律进行分析;随后采用AUTODYN有限差分法软件进行相应的数值模拟,数值模拟得到的裂纹扩展路径与试验结果基本一致。经过两者对比分析可知:随着冲击载荷作用的增加,裂纹平均扩展速度逐渐增大,随后趋于稳定值;预制裂纹的起裂时间随着冲击速度载荷的增加而逐渐降低,并在稳定值上下波动;随着冲击速度载荷的增加,裂纹扩展路径过程中的止裂时段逐渐变短。Abstract: In order to investigate the properties of crack fracture time, propagation speed and arrest period in the surrounding rock of tunnel under different impact loading speed, the dynamic tests were performed by self-developed adjustable speed drop weight impact test system, and the tight green sandstone was selected to make the cracked tunnel specimens. A crack propagation gauge (CPG) was applied to measure dynamic initiation time, propagation speeds and arrest time, respectively. The properties of crack propagation velocity, crack fracture time and crack arrest period were discussed and analyzed. The corresponding numerical simulation was carried out by AUTODYN code, and the simulation results showed that the crack propagation speeds and crack fracture time generally agree with the experimental results, and crack arrest period also was calculated. The results show that crack propagation speeds increase with impact loading speed, but as the impact loading speed is larger than a certain value, the crack speeds tend toward a stable value; Crack fracture time decreases with the increase of impact loading speed, and as the loading rate is larger than a certain value, it tends toward a stable value; With the increase of the impact loading speed, the crack arrest period in the crack propagation path gradually decreases.
-
Key words:
- tunnel /
- impact loading /
- crack propagation speeds /
- crack fracture time /
- crack arrest time
-
表 1 砂岩及杆件材料参数
Table 1. Material parameters of sandstone and LY12CZ
材料 ρ/(kg∙m−3) σc/(MPa) σt/(MPa) KIC/(MPa∙m1/2) Ed/(GPa) νd cd/(m·s−1) cs/(m·s−1) cR/(m·s−1) LY12CZ 2850 71.7 0.3 5006 砂岩 2265 22.08 1.08 0.468 13.58 0.164 2563 1639 1479.9 注:ρ为密度,σc为单轴抗压强度,σt为单轴抗拉强度,KIC为静态断裂韧度,Ed为弹性模量,νd为泊松比,cd为纵波波速,cs为横波波速,cR为瑞雷 波波速. 表 2 CPG测试结果
Table 2. CPG test results
试件编号 v/(m∙s−1) ti/μs va/(m∙s−1) 试件编号 v/(m∙s−1) ti/μs va/(m∙s−1) 1 1.939 315 177.957 9 5.903 277 598.180 2 2.435 307 224.744 10 6.398 274 613.668 3 2.930 305 239.419 11 6.893 265 628.571 4 3.425 282 301.829 12 7.389 261 647.059 5 3.921 275 443.548 13 7.884 255 659.176 6 4.578 279 458.881 14 8.380 262 672.780 7 4.912 274 486.189 15 8.683 257 674.386 8 5.407 266 574.912 -
[1] 李地元, 成腾蛟, 周韬, 等. 冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2015, 34(2): 249–260.LI Diyuan, CHENG Tengjiao, ZHOU Tao, et al. Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 249–260. [2] 杨井瑞, 张财贵, 周妍, 等. 用CSTBD试样确定砂岩的动态起裂和扩展韧度 [J]. 爆炸与冲击, 2014, 34(3): 264–271. DOI: 10.11883/1001-1455(2014)03-0264-08.YANG Jingrui, ZHANG Caigui, ZHOU Yan, et al. Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens [J]. Explosion and Shock Waves, 2014, 34(3): 264–271. DOI: 10.11883/1001-1455(2014)03-0264-08. [3] 潘峰, 党发宁, 焦凯, 等. 冲击荷载作用下不均匀脆性材料动态弯拉强度提高机制研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 3948–3955.PAN Feng, DANG Faning, JIAO Kai., et al Mechanism on enhancement of dynamic flexural tensile strength for nonuniform brittle materials under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3948–3955. [4] 李地元, 邱加冬, 李夕兵. 冲击载荷作用下层状砂岩动态拉压力学特性研究 [J]. 岩石力学与工程学报, 2015(10): 2091–2097.LI Diyuan, QIU Jiadong, LI Xibing. Experimental study on dynamic tensile and compressive properties of bedding sandstone under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015(10): 2091–2097. [5] LI J C, LI N N, LI H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint [J]. International Journal of Impact Engineering, 2017, 105: 109–116. DOI: 10.1016/j.ijimpeng.2016.12.011. [6] 胡柳青, 李夕兵, 龚声武. 冲击载荷作用下裂纹动态响应的数值模拟 [J]. 爆炸与冲击, 2006, 26(3): 214–221.HU Liuqing, LI Xibing, GONG Shengwu. Simulation on dynamic response of crack subjected to impact loading [J]. Explosion and Shock Waves, 2006, 26(3): 214–221. [7] WANG M, ZHU Z, DONG Y, et al. Study of mixed-mode I/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042. [8] WANG Q, FENG F, NI M, et al. Measurement of mode I and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics, 2011, 78(12): 2455–2469. DOI: 10.1016/j.engfracmech.2011.06.004. [9] WANG Q, XING L. Determination of fracture toughness K IC by using the flattened Brazilian disk specimen for rocks [J]. Engineering Fracture Mechanics, 1999, 64(2): 193–201. DOI: 10.1016/S0013-7944(99)00065-X. [10] WANG Q, YANG J, ZHANG C, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical-analytical method [J]. Engineering Fracture Mechanics, 2015, 141: 78–94. DOI: 10.1016/j.engfracmech.2015.04.025. [11] ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble [J]. Engineering Fracture Mechanics, 2013, 102(2): 288–309. [12] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(8): 423–439. [13] 宋义敏, 何爱军, 王泽军, 等. 冲击载荷作用下岩石动态断裂试验研究 [J]. 岩土力学, 2015, 36(4): 965–970.SONG Yiming, HE Aijun, WANG Zhejun, et al. Experiment study of the dynamic fractures of rock under impact loading [J]. Rock and Soil Mechanics, 2015, 36(4): 965–970. [14] 宋义敏, 杨小彬, 金璐, 等. 冲击载荷作用下岩石I型裂纹动态断裂试验研究 [J]. 振动与冲击, 2014, 33(11): 49–53.SONG Yiming, YANG Xiaobin, JIN Lu, et al. Dynamic fracture test for rock I-type crack under impact load [J]. Journal of Vibration and Shock, 2014, 33(11): 49–53. [15] 宋义敏, 杨小彬, 杨晟萱, 等. 冲击载荷下岩石裂纹动态断裂参数研究 [J]. 采矿与安全工程学报, 2015, 32(5): 834–839.SONG Yimin, YANG Xiaobin, YANG Shenxuan, et al. The research of rock dynamic fracture parameter under the action of impact load [J]. Journal of Mining and Safety Engineering, 2015, 32(5): 834–839. [16] 潘一山, 吕祥锋, 李忠华, 等. 高速冲击载荷作用下巷道动态破坏过程试验研究 [J]. 岩土力学, 2011, 32(5): 1281–1286. DOI: 10.3969/j.issn.1000-7598.2011.05.001.PAN Yishan, LÜ Xiangfeng, LI Zhonghua, et al. Experimental study of dynamic failure process of roadway under high velocity impact loading [J]. Rock and Soil Mechanics, 2011, 32(5): 1281–1286. DOI: 10.3969/j.issn.1000-7598.2011.05.001. [17] 郭东明, 刘康, 胡久羡, 等. 爆生气体对邻近硐室背爆侧预制裂纹影响机理 [J]. 煤炭学报, 2016, 41(1): 265–270.GUO Dongming, LIU Kang, HU Jiuxian, et al. Experimental study on the effect mechanism of the explosion gas on the precrack in the back-blasting of adjacent tunnel [J]. Journal of China Coal Society, 2016, 41(1): 265–270. [18] 郭东明, 刘康, 杨仁树, 等. 爆破对邻近巷道背爆侧倾斜裂纹影响实验研究 [J]. 采矿与安全工程学报, 2015, 32(1): 99–104.GUO Dongming, LIU Kang, YANG Renshu, et al. Experimental research on the influence of blasting on the inclined crack in the back-blasting side of nearby roadway [J]. Journal of Mining and Safety Engineering, 2015, 32(1): 99–104. [19] 郭东明, 刘康, 杨仁树, 等. 动静荷载对邻近巷道裂纹缺陷扰动的模拟实验 [J]. 爆炸与冲击, 2016, 36(3): 297–304. DOI: 10.11883/1001-1455(2016)03-0297-08.GUO Dongming, LIU Kang, YANG Renshu, et al. Simulated experiment of disturbance effect on crack defects of adjacent tunnel under dynamic and static load [J]. Explosion and Shock Waves, 2016, 36(3): 297–304. DOI: 10.11883/1001-1455(2016)03-0297-08. [20] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883.LI Diyuan, HAN Zhenyu, SUN Xiaolei, et al. Dynamic mechanical failure characteristics of marble withartificial flawsunder shpb tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883. [21] 王登科, 刘淑敏, 魏建平, 等. 冲击载荷作用下煤的破坏特性试验研究 [J]. 采矿与安全工程学报, 2017, 34(3): 594–600.WANG Dengke, LIU Shumin, WEI Jianping, et al. The failure characteristics of coal under impact load in laboratory [J]. Journal of Mining and Safety Engineering, 2017, 34(3): 594–600. [22] 袁璞, 马瑞秋. 不同含水状态下煤矿砂岩SHPB试验与分析 [J]. 岩石力学与工程学报, 2015, 34(S1): 2888–2893.YUAN Pu, MA Ruiqiu. Split Hopkinson pressure bar tests and analysis of coalmine sandstone with various moisture contents [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2888–2893. [23] 赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究 [J]. 煤炭学报, 2014, 39(2): 286–291.ZHAO Yixin, XIAO Han, HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading [J]. Journal of China Coal Society, 2014, 39(2): 286–291. [24] SAKSALA T, HOKKA M, KUOKKALA V T, et al. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59(8): 128–138. [25] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372.ZHOU Lei, ZHU Zheming, DONG Yuqing, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372. [26] 周磊, 朱哲明, 刘邦. 隧道周边不同位置径向裂纹对隧道围岩稳定性影响规律的研究 [J]. 岩土工程学报, 2016, 38(7): 1230–1237. DOI: 10.11779/CJGE201607009.ZHOU Lei, ZHU Zheming, LIU Bang. Influence of radial cracks on stability of surrounding rocks at different locations around tunnel [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1230–1237. DOI: 10.11779/CJGE201607009. [27] 周磊, 朱哲明, 刘邦. 裂纹对直墙拱形隧道围岩损伤破坏模式的影响规律研究 [J]. 岩土力学, 2017, 38(12): 3688–3697.ZHOU Lei, ZHU Zheming, LIU Bang. Influence of cracks on surrounding rock damage-failure mode of straight wall arch tunnel [J]. Rock and Soil Mechanics, 2017, 38(12): 3688–3697. [28] ZHOU L, ZHU Z, WANG M, et al. Dynamic propagation behavior of cracks emanating from tunnel edges under impact loads [J]. Soil Dynamic and Earthquake Engineering, 2018, 105: 119–126. DOI: 10.1016/j.soildyn.2017.12.012. [29] ZHU Z. Numerical prediction of crater blasting and bench blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6): 1088–1096. DOI: 10.1016/j.ijrmms.2009.05.009. [30] ZHU Z, MOHANTY B, XIE H. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: 10.1016/j.ijrmms.2006.09.002. [31] ZHU Z, XIE H, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: 10.1016/j.ijrmms.2007.04.012. [32] LI M, ZHU Z, LIU R, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043. [33] 唐志平, 王礼立. SHPB实验的电脑化数据处理系统 [J]. 爆炸与冲击, 1986, 6(4): 34–41.TANG Zhiping, WANG Lili. A computerized system of data processing used in SHPB experiments [J]. Explosion and Shock Waves, 1986, 6(4): 34–41. [34] 刘德顺, 李夕兵. 冲击机械系统动力学. 北京: 科学出版社, 1999. [35] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behavior of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.