致密砂岩巷道模型试件动态起裂及止裂全过程分析

周磊 朱哲明 王蒙 周昌林 董玉清 应鹏

周磊, 朱哲明, 王蒙, 周昌林, 董玉清, 应鹏. 致密砂岩巷道模型试件动态起裂及止裂全过程分析[J]. 爆炸与冲击, 2019, 39(9): 095101. doi: 10.11883/bzycj-2018-0073
引用本文: 周磊, 朱哲明, 王蒙, 周昌林, 董玉清, 应鹏. 致密砂岩巷道模型试件动态起裂及止裂全过程分析[J]. 爆炸与冲击, 2019, 39(9): 095101. doi: 10.11883/bzycj-2018-0073
ZHOU Lei, ZHU Zheming, WANG Meng, ZHOU Changlin, DONG Yuqing, YING Peng. Analysis on whole dynamical fracture process of tight sandstone tunnel model under impact loading[J]. Explosion And Shock Waves, 2019, 39(9): 095101. doi: 10.11883/bzycj-2018-0073
Citation: ZHOU Lei, ZHU Zheming, WANG Meng, ZHOU Changlin, DONG Yuqing, YING Peng. Analysis on whole dynamical fracture process of tight sandstone tunnel model under impact loading[J]. Explosion And Shock Waves, 2019, 39(9): 095101. doi: 10.11883/bzycj-2018-0073

致密砂岩巷道模型试件动态起裂及止裂全过程分析

doi: 10.11883/bzycj-2018-0073
基金项目: 国家自然科学基金资助项目(11672194);四川省科技计划项目(2018JZ0036);四川省安全监管局安全生产科技项目(aj20170515161307)
详细信息
    作者简介:

    周 磊(1990- ),男,博士,现任助理研究员,zhouleittkx@126.com

    通讯作者:

    朱哲明(1965- ),男,教授,博士,博士生导师,zhemingzhu@hotmail.com

  • 中图分类号: O389

Analysis on whole dynamical fracture process of tight sandstone tunnel model under impact loading

  • 摘要: 为了开展在不同冲击载荷作用下巷道围岩内裂纹的起裂、扩展及止裂等问题,以可调速冲击试验机进行动态加载试验,采用致密青砂岩制作裂纹巷道模型试件,并利用裂纹扩展计分别记录了动态起裂、扩展、止裂等时刻,对裂纹扩展速度的变化规律进行分析;随后采用AUTODYN有限差分法软件进行相应的数值模拟,数值模拟得到的裂纹扩展路径与试验结果基本一致。经过两者对比分析可知:随着冲击载荷作用的增加,裂纹平均扩展速度逐渐增大,随后趋于稳定值;预制裂纹的起裂时间随着冲击速度载荷的增加而逐渐降低,并在稳定值上下波动;随着冲击速度载荷的增加,裂纹扩展路径过程中的止裂时段逐渐变短。
  • 图  1  巷道模型示意图(单位:mm)

    Figure  1.  Sketch map of tunnel model (unit: mm)

    图  2  数值模型网格单元示意图

    Figure  2.  Sketch map of numerical model mesh unit

    图  3  数值模拟结果分析

    Figure  3.  Numerical simulation results

    图  4  高斯点的应力时程曲线

    Figure  4.  Normal stress time curves of Gauss point

    图  5  裂纹扩展特性曲线

    Figure  5.  Curves of crack propagation properties

    图  6  裂纹平均扩展速度与起裂时间趋势线

    Figure  6.  The trendline of crack average propagation velocity and initiation time

    图  7  裂纹止裂区间趋势线

    Figure  7.  The trendline of crack arrest period

    图  8  试验装置

    Figure  8.  Test device

    图  9  冲载载荷

    Figure  9.  Impact loading force

    图  10  CPG示意图

    Figure  10.  Sketch map of CPG

    图  11  CPG 测试数据分析

    Figure  11.  Analysis of CPG test data

    图  12  试验测试裂纹平均扩展速度与起裂时间结果值

    Figure  12.  Test results of crack average propagation speed and initiation time

    表  1  砂岩及杆件材料参数

    Table  1.   Material parameters of sandstone and LY12CZ

    材料ρ/(kg∙m−3)σc/(MPa)σt/(MPa)KIC/(MPa∙m1/2)Ed/(GPa)νdcd/(m·s−1)cs/(m·s−1)cR/(m·s−1)
    LY12CZ285071.70.35006
    砂岩226522.081.080.46813.580.164256316391479.9
     注:ρ为密度,σc为单轴抗压强度,σt为单轴抗拉强度,KIC为静态断裂韧度,Ed为弹性模量,νd为泊松比,cd为纵波波速,cs为横波波速,cR为瑞雷  波波速.
    下载: 导出CSV

    表  2  CPG测试结果

    Table  2.   CPG test results

    试件编号v/(m∙s−1)ti/μsva/(m∙s−1)试件编号v/(m∙s−1)ti/μsva/(m∙s−1)
    11.939315177.95795.903277598.180
    22.435307224.744106.398274613.668
    32.930305239.419116.893265628.571
    43.425282301.829127.389261647.059
    53.921275443.548137.884255659.176
    64.578279458.881148.380262672.780
    74.912274486.189158.683257674.386
    85.407266574.912
    下载: 导出CSV
  • [1] 李地元, 成腾蛟, 周韬, 等. 冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2015, 34(2): 249–260.

    LI Diyuan, CHENG Tengjiao, ZHOU Tao, et al. Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 249–260.
    [2] 杨井瑞, 张财贵, 周妍, 等. 用CSTBD试样确定砂岩的动态起裂和扩展韧度 [J]. 爆炸与冲击, 2014, 34(3): 264–271. DOI: 10.11883/1001-1455(2014)03-0264-08.

    YANG Jingrui, ZHANG Caigui, ZHOU Yan, et al. Determination of dynamic initiation toughness and propagation toughness of sandstone using CSTBD specimens [J]. Explosion and Shock Waves, 2014, 34(3): 264–271. DOI: 10.11883/1001-1455(2014)03-0264-08.
    [3] 潘峰, 党发宁, 焦凯, 等. 冲击荷载作用下不均匀脆性材料动态弯拉强度提高机制研究 [J]. 岩石力学与工程学报, 2015, 34(S2): 3948–3955.

    PAN Feng, DANG Faning, JIAO Kai., et al Mechanism on enhancement of dynamic flexural tensile strength for nonuniform brittle materials under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3948–3955.
    [4] 李地元, 邱加冬, 李夕兵. 冲击载荷作用下层状砂岩动态拉压力学特性研究 [J]. 岩石力学与工程学报, 2015(10): 2091–2097.

    LI Diyuan, QIU Jiadong, LI Xibing. Experimental study on dynamic tensile and compressive properties of bedding sandstone under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015(10): 2091–2097.
    [5] LI J C, LI N N, LI H B, et al. An SHPB test study on wave propagation across rock masses with different contact area ratios of joint [J]. International Journal of Impact Engineering, 2017, 105: 109–116. DOI: 10.1016/j.ijimpeng.2016.12.011.
    [6] 胡柳青, 李夕兵, 龚声武. 冲击载荷作用下裂纹动态响应的数值模拟 [J]. 爆炸与冲击, 2006, 26(3): 214–221.

    HU Liuqing, LI Xibing, GONG Shengwu. Simulation on dynamic response of crack subjected to impact loading [J]. Explosion and Shock Waves, 2006, 26(3): 214–221.
    [7] WANG M, ZHU Z, DONG Y, et al. Study of mixed-mode I/Ⅱ fractures using single cleavage semicircle compression specimens under impacting loads [J]. Engineering Fracture Mechanics, 2017, 177: 33–44. DOI: 10.1016/j.engfracmech.2017.03.042.
    [8] WANG Q, FENG F, NI M, et al. Measurement of mode I and mode Ⅱ rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar [J]. Engineering Fracture Mechanics, 2011, 78(12): 2455–2469. DOI: 10.1016/j.engfracmech.2011.06.004.
    [9] WANG Q, XING L. Determination of fracture toughness K IC by using the flattened Brazilian disk specimen for rocks [J]. Engineering Fracture Mechanics, 1999, 64(2): 193–201. DOI: 10.1016/S0013-7944(99)00065-X.
    [10] WANG Q, YANG J, ZHANG C, et al. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical-analytical method [J]. Engineering Fracture Mechanics, 2015, 141: 78–94. DOI: 10.1016/j.engfracmech.2015.04.025.
    [11] ZHANG Q B, ZHAO J. Effect of loading rate on fracture toughness and failure micromechanisms in marble [J]. Engineering Fracture Mechanics, 2013, 102(2): 288–309.
    [12] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60(8): 423–439.
    [13] 宋义敏, 何爱军, 王泽军, 等. 冲击载荷作用下岩石动态断裂试验研究 [J]. 岩土力学, 2015, 36(4): 965–970.

    SONG Yiming, HE Aijun, WANG Zhejun, et al. Experiment study of the dynamic fractures of rock under impact loading [J]. Rock and Soil Mechanics, 2015, 36(4): 965–970.
    [14] 宋义敏, 杨小彬, 金璐, 等. 冲击载荷作用下岩石I型裂纹动态断裂试验研究 [J]. 振动与冲击, 2014, 33(11): 49–53.

    SONG Yiming, YANG Xiaobin, JIN Lu, et al. Dynamic fracture test for rock I-type crack under impact load [J]. Journal of Vibration and Shock, 2014, 33(11): 49–53.
    [15] 宋义敏, 杨小彬, 杨晟萱, 等. 冲击载荷下岩石裂纹动态断裂参数研究 [J]. 采矿与安全工程学报, 2015, 32(5): 834–839.

    SONG Yimin, YANG Xiaobin, YANG Shenxuan, et al. The research of rock dynamic fracture parameter under the action of impact load [J]. Journal of Mining and Safety Engineering, 2015, 32(5): 834–839.
    [16] 潘一山, 吕祥锋, 李忠华, 等. 高速冲击载荷作用下巷道动态破坏过程试验研究 [J]. 岩土力学, 2011, 32(5): 1281–1286. DOI: 10.3969/j.issn.1000-7598.2011.05.001.

    PAN Yishan, LÜ Xiangfeng, LI Zhonghua, et al. Experimental study of dynamic failure process of roadway under high velocity impact loading [J]. Rock and Soil Mechanics, 2011, 32(5): 1281–1286. DOI: 10.3969/j.issn.1000-7598.2011.05.001.
    [17] 郭东明, 刘康, 胡久羡, 等. 爆生气体对邻近硐室背爆侧预制裂纹影响机理 [J]. 煤炭学报, 2016, 41(1): 265–270.

    GUO Dongming, LIU Kang, HU Jiuxian, et al. Experimental study on the effect mechanism of the explosion gas on the precrack in the back-blasting of adjacent tunnel [J]. Journal of China Coal Society, 2016, 41(1): 265–270.
    [18] 郭东明, 刘康, 杨仁树, 等. 爆破对邻近巷道背爆侧倾斜裂纹影响实验研究 [J]. 采矿与安全工程学报, 2015, 32(1): 99–104.

    GUO Dongming, LIU Kang, YANG Renshu, et al. Experimental research on the influence of blasting on the inclined crack in the back-blasting side of nearby roadway [J]. Journal of Mining and Safety Engineering, 2015, 32(1): 99–104.
    [19] 郭东明, 刘康, 杨仁树, 等. 动静荷载对邻近巷道裂纹缺陷扰动的模拟实验 [J]. 爆炸与冲击, 2016, 36(3): 297–304. DOI: 10.11883/1001-1455(2016)03-0297-08.

    GUO Dongming, LIU Kang, YANG Renshu, et al. Simulated experiment of disturbance effect on crack defects of adjacent tunnel under dynamic and static load [J]. Explosion and Shock Waves, 2016, 36(3): 297–304. DOI: 10.11883/1001-1455(2016)03-0297-08.
    [20] 李地元, 韩震宇, 孙小磊, 等. 含预制裂隙大理岩SHPB动态力学破坏特性试验研究 [J]. 岩石力学与工程学报, 2017, 36(12): 2872–2883.

    LI Diyuan, HAN Zhenyu, SUN Xiaolei, et al. Dynamic mechanical failure characteristics of marble withartificial flawsunder shpb tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 2872–2883.
    [21] 王登科, 刘淑敏, 魏建平, 等. 冲击载荷作用下煤的破坏特性试验研究 [J]. 采矿与安全工程学报, 2017, 34(3): 594–600.

    WANG Dengke, LIU Shumin, WEI Jianping, et al. The failure characteristics of coal under impact load in laboratory [J]. Journal of Mining and Safety Engineering, 2017, 34(3): 594–600.
    [22] 袁璞, 马瑞秋. 不同含水状态下煤矿砂岩SHPB试验与分析 [J]. 岩石力学与工程学报, 2015, 34(S1): 2888–2893.

    YUAN Pu, MA Ruiqiu. Split Hopkinson pressure bar tests and analysis of coalmine sandstone with various moisture contents [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2888–2893.
    [23] 赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究 [J]. 煤炭学报, 2014, 39(2): 286–291.

    ZHAO Yixin, XIAO Han, HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading [J]. Journal of China Coal Society, 2014, 39(2): 286–291.
    [24] SAKSALA T, HOKKA M, KUOKKALA V T, et al. Numerical modeling and experimentation of dynamic Brazilian disc test on Kuru granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59(8): 128–138.
    [25] 周磊, 朱哲明, 董玉清, 等. 中低速冲击载荷下巷道内裂纹的动态响应 [J]. 岩石力学与工程学报, 2017, 36(6): 1363–1372.

    ZHOU Lei, ZHU Zheming, DONG Yuqing, et al. Dynamic response of cracks in tunnels under impact loading of medium-low speed [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6): 1363–1372.
    [26] 周磊, 朱哲明, 刘邦. 隧道周边不同位置径向裂纹对隧道围岩稳定性影响规律的研究 [J]. 岩土工程学报, 2016, 38(7): 1230–1237. DOI: 10.11779/CJGE201607009.

    ZHOU Lei, ZHU Zheming, LIU Bang. Influence of radial cracks on stability of surrounding rocks at different locations around tunnel [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1230–1237. DOI: 10.11779/CJGE201607009.
    [27] 周磊, 朱哲明, 刘邦. 裂纹对直墙拱形隧道围岩损伤破坏模式的影响规律研究 [J]. 岩土力学, 2017, 38(12): 3688–3697.

    ZHOU Lei, ZHU Zheming, LIU Bang. Influence of cracks on surrounding rock damage-failure mode of straight wall arch tunnel [J]. Rock and Soil Mechanics, 2017, 38(12): 3688–3697.
    [28] ZHOU L, ZHU Z, WANG M, et al. Dynamic propagation behavior of cracks emanating from tunnel edges under impact loads [J]. Soil Dynamic and Earthquake Engineering, 2018, 105: 119–126. DOI: 10.1016/j.soildyn.2017.12.012.
    [29] ZHU Z. Numerical prediction of crater blasting and bench blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(6): 1088–1096. DOI: 10.1016/j.ijrmms.2009.05.009.
    [30] ZHU Z, MOHANTY B, XIE H. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: 10.1016/j.ijrmms.2006.09.002.
    [31] ZHU Z, XIE H, MOHANTY B. Numerical investigation of blasting-induced damage in cylindrical rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 111–121. DOI: 10.1016/j.ijrmms.2007.04.012.
    [32] LI M, ZHU Z, LIU R, et al. Study of the effect of empty holes on propagating cracks under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 186–194. DOI: 10.1016/j.ijrmms.2018.01.043.
    [33] 唐志平, 王礼立. SHPB实验的电脑化数据处理系统 [J]. 爆炸与冲击, 1986, 6(4): 34–41.

    TANG Zhiping, WANG Lili. A computerized system of data processing used in SHPB experiments [J]. Explosion and Shock Waves, 1986, 6(4): 34–41.
    [34] 刘德顺, 李夕兵. 冲击机械系统动力学. 北京: 科学出版社, 1999.
    [35] ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behavior of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  5216
  • HTML全文浏览量:  1502
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-09
  • 修回日期:  2018-05-09
  • 网络出版日期:  2019-08-25
  • 刊出日期:  2019-09-01

目录

    /

    返回文章
    返回