高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律

王春 程露萍 唐礼忠 王文 刘涛 韦永恒

王春, 程露萍, 唐礼忠, 王文, 刘涛, 韦永恒. 高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律[J]. 爆炸与冲击, 2019, 39(5): 053101. doi: 10.11883/bzycj-2018-0076
引用本文: 王春, 程露萍, 唐礼忠, 王文, 刘涛, 韦永恒. 高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律[J]. 爆炸与冲击, 2019, 39(5): 053101. doi: 10.11883/bzycj-2018-0076
WANG Chun, CHENG Luping, TANG Lizhong, WANG Wen, LIU Tao, WEI Yongheng. Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure[J]. Explosion And Shock Waves, 2019, 39(5): 053101. doi: 10.11883/bzycj-2018-0076
Citation: WANG Chun, CHENG Luping, TANG Lizhong, WANG Wen, LIU Tao, WEI Yongheng. Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure[J]. Explosion And Shock Waves, 2019, 39(5): 053101. doi: 10.11883/bzycj-2018-0076

高轴压和围压共同作用下受频繁冲击时含铜蛇纹岩能量演化规律

doi: 10.11883/bzycj-2018-0076
基金项目: 国家自然科学基金(51604093);河南省高校重点科研项目(18A440014);河南理工大学博士基金(672707);河南省重点研发与推广专项(科技攻关)项目(192102310247);深井瓦斯抽采与围岩控制技术国家地方联合工程实验室开放研究基金(SJF201803)
详细信息
    作者简介:

    王 春(1986- ),男,博士,讲师,wczy115728@163.com

  • 中图分类号: O347; TU45

Energy evolution law of copper-bearing serpentine received frequent impact under common action of high axial compression and confining pressure

  • 摘要: 探讨高轴压和围压共同作用下频繁冲击扰动试验过程中伴随主要能量的种类,并推演冲击扰动前后弹性能、塑性能等能量的计算公式;采用预加载围压、高轴压、0.5 MPa冲击气压模拟深部岩体承受的水平应力、垂直高应力及爆破开挖扰动的影响开展动力学试验,并基于试验结果分析含铜蛇纹岩的动力学特征及能量演化规律。研究结果表明:含铜蛇纹岩能承受的扰动冲击次数随轴压增大而减小,随围压增大而增大,且动态峰值应力随扰动冲击次数增加而减小;随扰动冲击次数的增加,岩样伴随的弹性能先增大后趋于减小,伴随的塑性能呈增大的趋势发展,反射能和入射能的比值与透射能和入射能比值的变化规律相反,前者呈增大趋势,后者呈减小趋势;单位体积吸(释)能随扰动冲击次数的增加呈下凸曲线趋势变化,其均值随围压增大先减小后增大,随轴压增大而减小。
  • 图  1  SHPB实验加载系统

    Figure  1.  Loading system of SHPB

    图  2  实验加载力学模型示意图

    Figure  2.  Sketch map of mechanical model under test load

    图  3  三轴压缩条件下含铜蛇纹岩的应力-应变曲线

    Figure  3.  Stress-strain curves of copper-bearing serpentine under triaxial constringent compression

    图  4  冲击气压与冲头速度关系示意图

    Figure  4.  Relational diagram of impact pressure and punch speed

    图  5  动态应力-应变曲线随冲击次数的变化规律

    Figure  5.  Change of dynamic stress-strain curves with impact times

    图  6  圆柱形岩样与方形岩样同体积等效示意图

    Figure  6.  Same volume equivalent diagram of cylindrical rock sample and square rock sample

    图  7  冲击伴随弹性能密度、塑性能密度计算关系图

    Figure  7.  Calculation diagram of elastic energy density and plastic energy density under impact load

    图  8  冲击伴随弹性能随扰动冲击次数的变化规律

    Figure  8.  The change law of elastic energy produced by impact load with disturbance impact times

    图  9  冲击伴随塑性能随扰动冲击次数的变化规律

    Figure  9.  The change law of plastic energy produced by impact load with disturbance impact times

    图  10  反射能与入射能比值随扰动冲击次数的变化规律

    Figure  10.  Change law of the ratio of reflection to incident energy with disturbance impact times

    图  11  透射能与入射能比值随扰动冲击次数的变化规律

    Figure  11.  Change law of the ratio of transmission to incident energy with disturbance impact times

    图  12  单位体积吸(释)能随扰动冲击次数的变化规律

    Figure  12.  Change law of unit volume absorption (release) energy with disturbance impact times

    图  13  单位体积吸(释)能均值随预加围压或轴压的变化规律

    Figure  13.  Change laws of the mean value of energy absorption (dissipation) per unit volume with preload confining pressure or axial pressure

    表  1  深部含铜蛇纹岩三轴压缩实验结果

    Table  1.   Test results of deep copper-bearing serpentine under triaxial constringent compression

    岩样编号围压/
    MPa
    围压加载速率/
    (mm·s−1
    轴压加载速率/
    (MPa·s−1
    三轴抗压强度/
    MPa
    SW1-150.030.05142.87
    SW1-2100.030.05171.90
    SW1-3150.030.05185.36
    SW1-4200.030.05208.04
    SW1-5250.030.05225.76
    SW1-6300.030.05249.02
    下载: 导出CSV

    表  2  高轴压和围压共同作用下频繁动态扰动实验结果

    Table  2.   Results of frequent dynamic disturbance test under combined action of high axial pressure and confining pressure

    实验分组岩样编号预加围压/MPa预加轴压/MPa冲击气压/MPa累计冲击次数
    1S1-1151000.521
    S1-2151200.519
    S1-3151400.513
    S1-4151600.512
    2S2-1201000.523
    S2-2201200.521
    S2-3201400.516
    S2-4201600.513
    3S3-1251000.526
    S3-2251200.522
    S3-3251400.518
    S3-4251600.515
    4S4-1301000.531
    S4-2301200.524
    S4-3301400.520
    S4-4301600.517
    下载: 导出CSV
  • [1] 尤业超, 李二兵, 谭跃虎, 等. 基于能量耗散原理的盐岩动力特性及破坏特征分析 [J]. 岩石力学与工程学报, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.

    YOU Yechao, LI Erbing, TAN Yuehu, et al. Analysis on dynamic properties and failure characteristics of salt rock based on energy dissipation principle [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 843–851. DOI: 10.13722/j.cnki.jrme.2016.0503.
    [2] 张忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究 [J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31. DOI: 10.15961/j.jsuese.2008.018.

    ZHANG Zhonghu, XIE Heping. Energy transfer and energy dissipation in rock deformation and fracture [J]. Journal of Sichuan University (Engineering Science), 2008, 40(2): 26–31. DOI: 10.15961/j.jsuese.2008.018.
    [3] Liu X H, Dai F, Zhang R, et al. Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity [J]. Environmental Earth Sciences, 2015, 73(10): 5933–5949. DOI: 10.1007/s12665-015-4106-3.
    [4] 李明, 茅献彪. 冲击载荷作用下砂岩破坏及能量耗变率效应的数值模拟研究 [J]. 爆破, 2014, 31(2): 78–83. DOI: 10.3963/j.issn.1001-487X.2014.02.017.

    LI Ming, MAO Xianbiao. Numerical simulation studies on strain rate effect of sandstone's energy dissipation and destruction under impulse loading [J]. Blasting, 2014, 31(2): 78–83. DOI: 10.3963/j.issn.1001-487X.2014.02.017.
    [5] 于水生, 卢玉斌, 朱万成, 等. SHPB 试验中花岗岩破坏程度与能量耗散关系分析 [J]. 东北大学学报(自然科学版), 2015, 36(12): 1733–1737. DOI: 10.3969/j.issn.1005-3026.2015.12.014.

    YU Shuisheng, LU Yubin, ZHU Wancheng, et al. Analysis on relationship between degree of damage and energy dissipation of granite in SHPB tests [J]. Journal of Northeastern University (Natural Science), 2015, 36(12): 1733–1737. DOI: 10.3969/j.issn.1005-3026.2015.12.014.
    [6] JU Yang, WANG Huijie, YANG Yongming, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses [J]. Science China: Technological Sciences, 2010, 53(4): 1098–1113. DOI: 10.1007/s11431-010-0126-0.
    [7] 黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究 [J]. 煤炭学报, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.

    LI Liyun, XU Zhiqiang, XIE Heping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities [J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. DOI: 10.13225/j.cnki.jccs.2011.12.012.
    [8] 叶洲元, 李夕兵, 万国香, 等. 受三维静载压缩岩石对冲击能的吸收效应 [J]. 爆炸与冲击, 2009, 29(4): 419–424. DOI: 10.11883/1001-1455(2009)04-0419-06.

    YE Zhouyuan, LI Xibing, WAN Guoxiang, et al. Impact energy-absorption property of rock under tri-axial compression [J]. Explosion and Shock Waves, 2009, 29(4): 419–424. DOI: 10.11883/1001-1455(2009)04-0419-06.
    [9] 许金余, 刘石. SHPB试验中高温下岩石变形破坏过程的能耗规律分析 [J]. 岩石力学与工程学报, 2013, 32(s2): 3109–3115.

    XU Jin-yu, LIU Shi. Analysis of energy dissipation rule during deformation and fracture process of rock under high temperatures in SHPB test [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(s2): 3109–3115.
    [10] 徐小丽, 高峰, 周清, 等. 高温后岩石变形破坏过程的能量分析 [J]. 武汉理工大学学报, 2011, 33(1): 104–107. DOI: 10.3963/j.issn.1671-4431.2011.01.023.

    XU Xiaoli, GAO Feng, ZHOU Qing, et al. Energy analysis of rock deformation and failure process after high temperature [J]. Journal of Wuhan University of Technology, 2011, 33(1): 104–107. DOI: 10.3963/j.issn.1671-4431.2011.01.023.
    [11] 尹土兵, 李夕兵, 叶洲元, 等. 温–压耦合及动力扰动下岩石破碎的能量耗散 [J]. 岩石力学与工程学报, 2013, 32(6): 1197–1202. doi: 10.3969/j.issn.1000-6915.2013.06.013

    YIN Tubing, LI Xibing, YE Zhouyuan, et al. Energy dissipation of rock fracture under thermo-mechanical coupling and dynamic disturbances s [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1197–1202. doi: 10.3969/j.issn.1000-6915.2013.06.013
    [12] 李夕兵, 左宇军, 马春德. 动静组合加载下岩石破坏的应变能密度准则及突变理论分析 [J]. 岩石力学与工程学报, 2005, 24(16): 2814–2824. DOI: 10.3321/j.issn:1000-6915.2005.16.002.

    LI Xibing, ZUO Yujun, MA Chunde. Failure criterion of strain energy density and catastrophe theory analysis of rock subjected to static-dynamic coupling loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2814–2824. DOI: 10.3321/j.issn:1000-6915.2005.16.002.
    [13] 金解放, 李夕兵, 殷志强, 等. 轴压和围压对循环冲击下砂岩能量耗散的影响 [J]. 岩土力学, 2013, 34(11): 3096–3102. DOI: 10.16285/j.rsm.2013.11.007.

    JIN Jiefang, LI Xibing, YIN Zhiqiang, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads [J]. Rock and Soil Mechanics, 2013, 34(11): 3096–3102. DOI: 10.16285/j.rsm.2013.11.007.
    [14] 赵伏军, 王宏宇, 彭云, 等. 动静组合载荷破岩声发射能量与破岩效果试验研究 [J]. 岩石力学与工程学报, 2012, 31(7): 1363–1368. DOI: 10.3969/j.issn.1000-6915.2012.07.008.

    ZHAO Fujun, WANG Hongyu, PENG Yun, et al. Experimental research on acoustic emission energy and rock crushing effect under static-dynamic coupling loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7): 1363–1368. DOI: 10.3969/j.issn.1000-6915.2012.07.008.
    [15] 刘少虹, 毛德兵, 齐庆新, 等. 动静加载下组合煤岩的应力波传播机制与能量耗散 [J]. 煤炭学报, 2014, 39(S1): 15–11. DOI: 10.13225/j.cnki.jccs.2013.0411.

    LIU Shaohong, MAO Debing, QI Qingxin, et al. Under static loading stress wave propagation mechanism and energy dissipation in compound coal-rock [J]. Journal of China Coal Society, 2014, 39(S1): 15–11. DOI: 10.13225/j.cnki.jccs.2013.0411.
    [16] 王文, 李化敏, 顾合龙, 等. 动静组合加载含水煤样能量耗散特征分析 [J]. 岩石力学与工程学报, 2015, 34(S2): 3965–3971. DOI: 10.13722/j.cnki.jrme.2015.0546.

    WANG Wen, LI Huamin, GU Helong, et al. Feature analysis of energy dissipation of water-saturated coal samples under coupled static-dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3965–3971. DOI: 10.13722/j.cnki.jrme.2015.0546.
    [17] LI X, ZHOU Z, ZHAO Y. Approach to minish scattering of results for split Hopkinson pressure bar test [J]. Journal of Central South University of Technology, 2007, 14(3): 404–407. DOI: 10.1007/s11771-007-0079-z.
    [18] 李夕兵, 周子龙, 王卫华. 运用有限元和神经网络为SHPB装置构造理想冲头 [J]. 岩石力学与工程学报, 2005, 24(23): 4215–4218. DOI: 10.3321/j.issn:1000-6915.2005.23.003.

    LI Xibing, ZHOU Zilong, WANG Weihua. Construction of ideal striker for SHPB device based on FEM and neural network [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4215–4218. DOI: 10.3321/j.issn:1000-6915.2005.23.003.
    [19] Li X B, Zhou Z L, Lok T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [20] 宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性试验初探 [J]. 岩石力学与工程学报, 2011, 30(6): 1178–1190.

    GONG Fengqiang, LI Xibing, LIU Xiling. Preliminary experimental study of characteristics of rock subjected to 3D coupled static and dynamic loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1178–1190.
    [21] 李夕兵, 古德生. 岩石冲击动力学 [M]. 长沙: 中南工业大学出版社, 1994: 16−20.
    [22] 武建力. 冬瓜山铜矿频繁爆破开采围岩变形与破坏机理研究 [D]. 长沙: 中南大学, 2014: 31−42.
    [23] 单仁亮. 岩石冲击破坏力学模型及其随机性研究 [D]. 北京: 中国矿业大学, 1997: 67−78.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  4403
  • HTML全文浏览量:  1535
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-13
  • 修回日期:  2018-08-20
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回