基于晶体塑性理论研究铝材料高压高应变率下的强度特性

潘昊 王升涛 吴子辉 胡晓棉

潘昊, 王升涛, 吴子辉, 胡晓棉. 基于晶体塑性理论研究铝材料高压高应变率下的强度特性[J]. 爆炸与冲击, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084
引用本文: 潘昊, 王升涛, 吴子辉, 胡晓棉. 基于晶体塑性理论研究铝材料高压高应变率下的强度特性[J]. 爆炸与冲击, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084
PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084
Citation: PAN Hao, WANG Shengtao, WU Zihui, HU Xiaomian. On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory[J]. Explosion And Shock Waves, 2019, 39(2): 023102. doi: 10.11883/bzycj-2018-0084

基于晶体塑性理论研究铝材料高压高应变率下的强度特性

doi: 10.11883/bzycj-2018-0084
基金项目: 

科学挑战专题 TZ2018001

国家自然科学基金 11702031

详细信息
    作者简介:

    潘昊(1979-), 男, 博士, 副研究员, pan_hao@iapcm.ac.cn

    通讯作者:

    胡晓棉(1963-), 女, 博士, 研究员, 博士生导师, hu_xiaomian@iapcm.ac.cn

  • 中图分类号: O346.3

On strength of aluminum under high pressure and high strain rate based on crystal plasticity theory

  • 摘要: 为了了解金属材料在极端加载下复杂动态响应过程中的多种机制和效应,重点针对Al材料在高压、高应变率加载下的塑性变形机制,在经典晶体塑性模型的基础上,对其中的非线性弹性、位错动力学和硬化形式进行改进,建立适用于高压、高应变率加载下的热弹-黏塑性晶体塑性模型。该模型可以较好地描述单晶铝和多晶铝材料屈服强度随压力的变化过程,相比宏观模型,用该模型还获得了多晶Al材料在冲击加载下的织构演化规律,揭示了织构择优取向行为和压力的关系。
  • 图  1  不同模型的Al材料位错滑移速度和剪应力及与实验结果比较

    Figure  1.  Dislocation glide speed-shear stress curves of Al materials by different theoretical models compared with experimental results

    图  2  单晶Al材料剪切强度随加载压力的变化

    Figure  2.  Effect of loading pressure on shear strength of single-crystal Al materials

    图  3  多晶Al材料剪切强度随加载压力的变化

    Figure  3.  Effect of loading pressure on shear strength of polycrystalline Al materials

    图  4  多晶Al材料不同加载压力下的织构演化结果

    Figure  4.  Texture evolution of polycrystalline Al materials under different loading pressures

  • [1] JOHNSON W. Impact strength of materials[M]. London:Edward Arnold, 1972.
    [2] MEYERS M A. Dynamic behavior of materials[M]. New York:John Wiley & Sons, 1994.
    [3] ZHAO F, WANG L, FAN D, et al. Macro-deformation twins in single-crystal aluminum[J]. Physical Review Letters, 2016, 116(7):075501. DOI: 10.1103/PhysRevLett.116.075501.
    [4] VOGLER T J. On measuring the strength of metals at ultrahigh strain rates[J]. Journal of Applied Physics, 2009, 106(5):053530. DOI: 10.1063/1.3204777.
    [5] ZHAO Z, MAO W, ROTERS F, et al. A texture optimization study for minimum earing in aluminium by use of a texture component crystal plasticity finite element method[J]. Acta Materialia, 2004, 52(4):1003-1012. DOI: 10.1016/j.actamat.2003.03.001.
    [6] SALVADO F C, TEIXEIRA-DIAS F, WALLEY S M, et al. A review on the strain rate dependency of the dynamic viscoplastic response of FCC metals[J]. Progress in Materials Science, 2017, 88:186-231. DOI: 10.1016/j.pmatsci.2017.04.004.
    [7] 刘旭红, 黄西成, 陈裕泽, 等.强动载荷下金属材料塑性变形本构模型评述[J].力学进展, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004

    LIU Xuhong, HUANG Xicheng, CHEN Yuze, et al. A review on constitutive models for plastic deformation of metal materials under dynamic loading[J]. Advances in Mechanics, 2007, 37(3):361-374. doi: 10.3321/j.issn:1000-0992.2007.03.004
    [8] 朱建士, 胡晓棉, 王裴, 等.爆炸与冲击动力学若干问题研究进展[J].力学进展, 2010, 40(4):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001612496

    ZHU Jianshi, HU Xiaomian, WANG Pei, et al. A review on research progress in explosion mechanics and impact dynamics[J]. Advances in Mechanics, 2010, 40(4):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201001612496
    [9] 杨卫.细观力学和细观损伤力学[J].力学进展, 1992, 22(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004352004

    YANG Wei. Meso-mechanics and meso-damage mechanics[J]. Advances in Mechanics, 1992, 22(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004352004
    [10] 白以龙, 汪海英, 夏蒙棼, 等.固体的统计细观力学-连接多个耦合的时空尺度[J].力学进展, 2006, 36(2):286-305. doi: 10.3321/j.issn:1000-0992.2006.02.012

    BAI Yilong, WANG Haiying, XIA Mengfen, et al. Statistical mesomechanics of solid, linking coupled multiple space and time scales[J]. Advances in Mechanics, 2006, 32(2):286-305. doi: 10.3321/j.issn:1000-0992.2006.02.012
    [11] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825. DOI: 10.1063/1.338024.
    [12] ASARO R J. Crystal plasticity[J]. Journal of Applied Mechanics, 1983, 50(4b):921-934. doi: 10.1115/1.3167205
    [13] CLAYTON J D. Nonlinear Eulerian thermoelasticity for anisotropic crystals[J]. Journal of the Mechanics and Physics of Solids, 2013, 61(10):1983-2014. DOI: 10.1016/j.jmps.2013.05.009.
    [14] AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates[J]. International Journal of Plasticity, 2011, 27(1):1-24. DOI: 10.1016/j.ijplas.2010.03.002.
    [15] MAYER A E, KHISHCHENKO K V, LEVASHOV P R, et al. Modeling of plasticity and fracture of metals at shock loading[J]. Journal of Applied Physics, 2013, 113(19):193508. DOI: 10.1063/1.4805713.
    [16] LLOYD J T, CLAYTON J D, BECKER R, et al. Simulation of shock wave propagation in single crystal and polycrystalline aluminum[J]. International Journal of Plasticity, 2014, 60:118-144. DOI: 10.1016/j.ijplas.2014.04.012.
    [17] MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations[J]. Acta Materialia, 2006, 54(8):2169-2179. DOI: 10.1016/j.actamat.2006.01.005.
    [18] ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4):1152-1211. DOI: 10.1016/j.actamat.2009.10.058.
    [19] MARIN E B, DAWSON P R. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 165(1):1-21. DOI: 10.1016/S0045-7825(98)00034-6.
    [20] KALIDINDI S R, BRONKHORST C A, ANAND L. Crystallographic texture evolution in bulk deformation processing of FCC metals[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(3):537-569. DOI: 10.1016/0022-5096(92)80003-9.
    [21] THOMAS J F. Third-order elastic constants of aluminum[J]. Physical Review, 1968, 175:955-962. DOI: 10.1103/PhysRev.175.955.
    [22] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. DOI: 10.1016/0001-6160(88)90030-2.
    [23] KRASNIKOV V S, MAYER A E, YALOVETS A P. Dislocation based high-rate plasticity model and its application to plate-impact and ultra-short electron irradiation simulations[J]. International Journal of Plasticity, 2011, 27(8):1294-1308. DOI: 10.1016/j.ijplas.2011.02.008.
    [24] BORODIN E N, MAYER A E. Structural model of mechanical twinning and its application for modeling of the severe plastic deformation of copper rods in Taylor impact tests[J]. International Journal of Plasticity, 2015, 74:141-157. DOI: 10.1016/j.ijplas.2015.06.006.
    [25] TAYLOR G I. The mechanism of plastic deformation of crystals:Part Ⅰ. Theoretical[J]. Proceedings of the Royal Society of London:Series A, Containing Papers of a Mathematical and Physical Character, 1934, 145(855):362-387. DOI: 10.1098/rspa.1934.0106.
    [26] TAYLOR G I. Plastic strain rate in metals[Z]. Twenty-eight May Lecture to the Institute of Metals, 1938.
    [27] KALIDINDI S R, BRONKHORST C A, ANAND L. On the accuracy of the Taylor assumption in polycrystalline plasticity[M]//Anisotropy and localization of plastic deformation. Springer Netherlands, 1991: 139-142.
    [28] HARTLEY C S, DAWSON P R, BOYCE D E, et al. A comparison of deformation textures and mechanical properties predicted by different crystal plasticity codes[R]. Air Force Research Laboratory, Materials and Manufacturing Directorate, 2008.
    [29] HUANG H, ASAY J R. Reshock and release response of aluminum single crystal[J]. Journal of Applied Physics, 2007, 101(6):063550. DOI: 10.1063/1.2655571.
    [30] MAYER A E, KHISHCHENKO K V, LEVASHOV P R, et al. Modeling of plasticity and fracture of metals at shock loading[J]. Journal of Applied Physics, 2013, 113(19):193508. DOI: 10.1063/1.4805713.
    [31] VOGLER T J, AO T, ASAY J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009, 25(4):671-694. DOI: 10.1016/j.ijplas.2008.12.003.
    [32] AUSTIN R A, MCDOWELL D L. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum[J]. International Journal of Plasticity, 2012, 32:134-154. DOI: 10.1016/j.ijplas.2011.11.002.
  • 加载中
图(4)
计量
  • 文章访问数:  6754
  • HTML全文浏览量:  1941
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-16
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-02-05

目录

    /

    返回文章
    返回