一种薄膜式的光纤压力传感技术

王昭 吴祖堂 温广瑞 杨军 陈立强 史国凯

王昭, 吴祖堂, 温广瑞, 杨军, 陈立强, 史国凯. 一种薄膜式的光纤压力传感技术[J]. 爆炸与冲击, 2019, 39(6): 064101. doi: 10.11883/bzycj-2018-0091
引用本文: 王昭, 吴祖堂, 温广瑞, 杨军, 陈立强, 史国凯. 一种薄膜式的光纤压力传感技术[J]. 爆炸与冲击, 2019, 39(6): 064101. doi: 10.11883/bzycj-2018-0091
WANG Zhao, WU Zutang, WEN Guangrui, YANG Jun, CHEN Liqiang, SHI Guokai. A fiber optic pressure sensing technology based on thin diaphragm structure[J]. Explosion And Shock Waves, 2019, 39(6): 064101. doi: 10.11883/bzycj-2018-0091
Citation: WANG Zhao, WU Zutang, WEN Guangrui, YANG Jun, CHEN Liqiang, SHI Guokai. A fiber optic pressure sensing technology based on thin diaphragm structure[J]. Explosion And Shock Waves, 2019, 39(6): 064101. doi: 10.11883/bzycj-2018-0091

一种薄膜式的光纤压力传感技术

doi: 10.11883/bzycj-2018-0091
详细信息
    作者简介:

    王 昭(1985- ),男,博士研究生,工程师,wangzhao@nint.ac.cn

    通讯作者:

    吴祖堂(1969- ),男,博士,高级工程师,wuzutang@nint.ac.cn

  • 中图分类号: O389; TP212

A fiber optic pressure sensing technology based on thin diaphragm structure

  • 摘要: 提出了一种薄膜式的光纤压力传感技术,用于测量冲击波的反射超压峰值。该技术通过建立待测压力与薄膜加速度之间的正比例关系来获取压力。结合Fabry-Perot腔光学干涉测量技术,设计并加工实现了一种光纤压力传感器。开展数值模拟和激波管实验,结果证明,该压力获取技术可行,且该技术具有无须标定、制作简单、成本低廉、测量精度高、响应时间快的优点。
  • 图  1  光纤压力传感器的原理图

    Figure  1.  Sketch of the optical fiber pressure principle

    图  2  光纤压力传感器

    Figure  2.  The optical fiber pressure sensor

    图  3  光纤压力测量系统示意图

    Figure  3.  Schematic of the pressure measurement system

    图  4  数值模拟各测点速度波形

    Figure  4.  Velocity curves of the gauges in simulation

    图  5  数值模拟各测点加速度波形

    Figure  5.  Acceleration curves of the gauges in simulation

    图  6  不同加载压力下薄膜的速度

    Figure  6.  Velocity of the diaphragm at different pressures

    图  7  激波管实验原理图

    Figure  7.  Schematic diagram of the shock tube experiment

    图  8  激波管实验中的光学信号

    Figure  8.  The optical signals of the shock tube experiment

    图  9  激波管实验压力数据波形

    Figure  9.  The pressure curves of the reference sensor and the optical sensor

    图  10  数值模拟和激波管实验的速度时程曲线

    Figure  10.  Histories of velocity between the simulation and shock tube experiment

    图  11  不同工况下的速度时程曲线

    Figure  11.  Histories of velocity under different conditions

  • [1] PINET E. Pressure measurement with fiber-optic sensors: commercial technologies and applications [C]// Proceedings of SPIE: The International Society for Optical Engineering. Québec , Canada, 2011. DOI: 10.1117/12.895536.
    [2] RAO Y. Study on fiber-optic low-coherence interferometric and fiber Bragg grating sensors [J]. Photonic sensors, 2011, 19(4): 382–400. DOI: 10.1007/s13320-011-0042-3.
    [3] HSU Y S, WANG L, LIU W, et al. Temperature compensation of optical fiber Bragg grating pressure sensor [J]. Photonics Technology Letters, 2006, 18(7): 874–876. DOI: 10.1109/LPT.2006.871832.
    [4] WANG Y, NI X, WANG M, et al. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter [J]. Optics Express, 2017, 25(2): 644–653. DOI: 10.1364/OE.25.000644.
    [5] XU B, LIU Y, WANG D, et al. Optical fiber Fabry-Pérot interferometer based on an air cavity for gas pressure sensing [J]. Photonics Journal, 2017, 9(2): 1–9. DOI: 10.1109/JPHOT.2017.2685939.
    [6] WANG J, WANG M, XU J, et al. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity [J]. Applied Optics, 2014, 53(28): 6494–6502. DOI: 10.1364/AO.53.006494.
    [7] ZOU X, WU N, TIAN Y, et al. Ultrafast Fabry–Perot fiber-optic pressure sensors for multimedia blast event measurements [J]. Applied Optics, 2013, 52(6): 1248–1254. DOI: 10.1364/AO.52.001248.
    [8] ZOU X, WU N, TIAN Y, et al. Rapid miniature fiber optic pressure sensors for blast wave measurements [J]. Optics and Lasers in Engineering, 2013, 51: 134–139. DOI: 10.1016/j.optlaseng.2012.09.001.
    [9] WU N, ZOU X, TIAN Y, et al. An ultra-fast fiber optic pressure sensor for blast event measurements [J]. Measurement Science And Technology, 2012, 23: 1–7. DOI: 10.1088/0957-0233/23/5/055102.
    [10] WU N, WANG W, TIAN Y, et al. Low-cost rapid miniature optical pressure sensors for blast wave measurements [J]. Optics Express, 2011, 19(11): 10797–10804. DOI: 10.1364/OE.19.010797.
    [11] CHAVKO M, A W, KOLLER W, et al. Measurement of blast wave by a miniature fiber optic pressure transducer in the rat brain [J]. Journal of Neuroscience Methods, 2007, 159: 277–281. DOI: 10.1016/j.jneumeth.2006.07.018.
    [12] MACPHERSON W N, GANDER M J, BARTON J S, et al. Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor [J]. Measurement Science and Technology, 2000, 11: 95–102. DOI: 10.1088/0957-0233/11/2/302.
    [13] KOCH C. Calibration of a fiber tip ultrasonic sensor up to 50 MHz and the application to shock wave measurement [J]. Ultrasonics, 1998(36): 721–725. DOI: 10.1016/S0041-624X(97)00121-2.
    [14] LIU H, WANG D N, LIU J, et al. Range Tunable optical fiber micro-Fabry-Pérot interferometer for pressure sensing [J]. Photonics Technology Letters, 2016, 28(4): 402–405. DOI: 10.1109/LPT.2015.2496659.
    [15] ZHU J, WANG M, SHEN M, et al. An optical fiber Fabry–Pérot pressure sensor using an SU-8 structure and angle polished fiber [J]. Photonics Technology Letters, 2015, 27(19): 2087–2090. DOI: 10.1109/LPT.2015.2453318.
    [16] ZELAN M, ARRHEN F, JARLEMARK P, et al. Characterization of a fiber-optic pressure sensor in a shock tube system for dynamic calibrations [J]. Metrologia, 2015, 52(1): 48–53. DOI: 10.1088/0026-1394/52/1/48.
    [17] 周会娟, 余尚江, 杨吉祥, 等. 光纤法布里-珀罗腔式冲击波压力传感器及其应用研究 [J]. 兵工学报, 2014, 35(S2): 328–332.

    ZHOU Huijuan, YU Shangjiang, YANG Jixiang, et al. Research on fiber-optic Fabry-Perot shock-wave pressure sensor and its applications [J]. Acta Armamentarii, 2014, 35(S2): 328–332.
    [18] 王俊杰, 谢俊. 一种全石英光纤法布里-珀罗大量程压力传感器的研制 [J]. 武汉理工大学学报, 2016, 38(3): 104–107. DOI: 10.3963/j.issn.167-4431.2016.03.018.

    WANG Junjie, XIE Jun. Research of a kind of quartz optical fiber Fabry-Perot cavity wide-range pressure sensor [J]. Journal of Wuhan University of Technology, 2016, 38(3): 104–107. DOI: 10.3963/j.issn.167-4431.2016.03.018.
    [19] 杨洋, 高嵩, 李鹏生. 光强调制型光纤压力测试仪的研制 [J]. 仪表技术与传感器, 2006(12): 22–24. doi: 10.3969/j.issn.1002-1841.2006.12.009

    YANG Yang, GAO Song, LI Pengsheng. Development of light intensity modulation type fiber pressure meter [J]. Instrument Technique and Sensor, 2006(12): 22–24. doi: 10.3969/j.issn.1002-1841.2006.12.009
    [20] 杨韫铎, 康娟, 徐贲, 等. 基于扫描激光器的边孔光纤光栅温度压力传感系统 [J]. 光子学报, 2016, 45(6): 1–6. DOI: 10.3788/gzxb20164506.0606001.

    YANG Yunduo, KANG Juan, XU Ben, et al. Temperature and pressure sensing system of side hole fiber grating based on scanning laser [J]. Acta Photonica Sinica, 2016, 45(6): 1–6. DOI: 10.3788/gzxb20164506.0606001.
    [21] 陈露, 朱佳利, 李泽焱, 等. 波纹膜片式光纤法布里-珀罗压力传感器 [J]. 光学学报, 2016, 36(3): 1–5. DOI: 10.3788/AOS201636.0306002.

    CHEN Lu, ZHU Jiali, LI Zeyan, et al. Optical fiber Fabry-Perot pressure sensor using corrugated diaphragm [J]. Acta Optica Sinica, 2016, 36(3): 1–5. DOI: 10.3788/AOS201636.0306002.
    [22] 丰雷. 影响激波管动态压力校准精度的关键问题研究[D]. 太原: 中北大学, 2016.

    FENG Lei. Research of key problems affecting dynamic pressure calibration precision of shock tube[D]. Taiyuan: North University of China, 2016.
  • 加载中
图(11)
计量
  • 文章访问数:  5610
  • HTML全文浏览量:  2008
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-21
  • 修回日期:  2018-07-13
  • 网络出版日期:  2019-07-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回